123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- """Minimal implementation of BlipVisionModel intended to be only used
- within a vision language model."""
- from array import array
- from typing import Optional, Union
- import torch
- import torch.nn as nn
- from PIL import Image
- from transformers import Blip2VisionConfig, BlipVisionConfig
- from transformers.models.blip.modeling_blip import BlipAttention
- from aphrodite.common.config import ModelConfig
- from aphrodite.common.sequence import SequenceData
- from aphrodite.constants import APHRODITE_TOKEN_ID_ARRAY_TYPE
- from aphrodite.distributed import divide, get_tensor_model_parallel_world_size
- from aphrodite.inputs import LLMInputs
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.multimodal.utils import (cached_get_tokenizer,
- repeat_and_pad_placeholder_tokens)
- from aphrodite.quantization import QuantizationConfig
- try:
- from xformers import ops as xops
- USE_XFORMERS_OPS = True
- except ImportError:
- USE_XFORMERS_OPS = False
- def get_blip_patch_grid_length(*, image_size: int, patch_size: int) -> int:
- assert image_size % patch_size == 0
- return image_size // patch_size
- def get_blip_num_patches(*, image_size: int, patch_size: int) -> int:
- grid_length = get_blip_patch_grid_length(image_size=image_size,
- patch_size=patch_size)
- return grid_length * grid_length
- def get_blip_image_feature_size(
- hf_config: Union[BlipVisionConfig, Blip2VisionConfig], ) -> int:
- return get_blip_num_patches(image_size=hf_config.image_size,
- patch_size=hf_config.patch_size)
- def get_max_blip_image_tokens(
- hf_config: Union[BlipVisionConfig, Blip2VisionConfig], ) -> int:
- return get_blip_image_feature_size(hf_config)
- def dummy_seq_data_for_blip(
- hf_config: Union[BlipVisionConfig, Blip2VisionConfig],
- seq_len: int,
- *,
- image_token_id: int,
- image_feature_size_override: Optional[int] = None,
- ):
- if image_feature_size_override is None:
- image_feature_size = get_blip_image_feature_size(hf_config)
- else:
- image_feature_size = image_feature_size_override
- token_ids = array(APHRODITE_TOKEN_ID_ARRAY_TYPE,
- [image_token_id]) * image_feature_size
- token_ids += array(APHRODITE_TOKEN_ID_ARRAY_TYPE,
- [0]) * (seq_len - image_feature_size)
- return SequenceData(token_ids)
- def dummy_image_for_blip(
- hf_config: Union[BlipVisionConfig, Blip2VisionConfig],
- num_images: int,
- *,
- image_width_override: Optional[int] = None,
- image_height_override: Optional[int] = None,
- ):
- width = height = hf_config.image_size
- if image_width_override is not None:
- width = image_width_override
- if image_height_override is not None:
- height = image_height_override
- image = Image.new("RGB", (width, height), color=0)
- return {"image": image if num_images == 1 else [image] * num_images}
- def input_processor_for_blip(
- model_config: ModelConfig,
- hf_config: Union[BlipVisionConfig, Blip2VisionConfig],
- llm_inputs: LLMInputs,
- *,
- image_token_id: int,
- image_feature_size_override: Optional[int] = None,
- ):
- multi_modal_data = llm_inputs.get("multi_modal_data")
- if multi_modal_data is None or "image" not in multi_modal_data:
- return llm_inputs
- tokenizer = cached_get_tokenizer(model_config.tokenizer)
- if image_feature_size_override is None:
- image_feature_size = get_blip_image_feature_size(hf_config)
- else:
- image_feature_size = image_feature_size_override
- new_prompt, new_token_ids = repeat_and_pad_placeholder_tokens(
- tokenizer,
- llm_inputs.get("prompt"),
- llm_inputs["prompt_token_ids"],
- placeholder_token_id=image_token_id,
- repeat_count=image_feature_size,
- )
- # NOTE: Create a defensive copy of the original inputs
- return LLMInputs(prompt_token_ids=new_token_ids,
- prompt=new_prompt,
- multi_modal_data=multi_modal_data)
- # Adapted from https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/blip/modeling_blip.py#L164 # noqa
- class BlipVisionEmbeddings(nn.Module):
- def __init__(self, config: BlipVisionConfig):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.image_size = config.image_size
- self.patch_size = config.patch_size
- self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
- self.patch_embedding = nn.Conv2d(
- in_channels=3,
- out_channels=self.embed_dim,
- kernel_size=self.patch_size,
- stride=self.patch_size,
- )
- self.num_patches = get_blip_num_patches(image_size=self.image_size,
- patch_size=self.patch_size)
- self.num_positions = self.num_patches + 1
- self.position_embedding = nn.Parameter(
- torch.randn(1, self.num_positions, self.embed_dim))
- def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
- batch_size = pixel_values.shape[0]
- target_dtype = self.patch_embedding.weight.dtype
- patch_embeds = self.patch_embedding(pixel_values.to(
- dtype=target_dtype)) # shape = [*, width, grid, grid]
- patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
- class_embeds = self.class_embedding.expand(batch_size, 1, -1)
- embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
- position_embeds = self.position_embedding.to(target_dtype)
- embeddings = embeddings + position_embeds[:, :embeddings.size(1), :]
- return embeddings
- class BlipParallelAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- def __init__(
- self,
- config: BlipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.head_dim = self.embed_dim // self.num_heads
- if self.head_dim * self.num_heads != self.embed_dim:
- raise ValueError(
- "embed_dim must be divisible by num_heads "
- f"(got `embed_dim`: {self.embed_dim} and `num_heads`:"
- f" {self.num_heads}).")
- self.scale = self.head_dim**-0.5
- self.dropout = config.attention_dropout
- self.qkv = QKVParallelLinear(
- self.embed_dim,
- self.head_dim,
- self.num_heads,
- bias=config.qkv_bias,
- quant_config=quant_config,
- )
- self.projection = RowParallelLinear(
- self.embed_dim,
- self.embed_dim,
- quant_config=quant_config,
- )
- self.tp_size = get_tensor_model_parallel_world_size()
- self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
- return tensor.view(bsz, seq_len, self.num_heads,
- self.head_dim).transpose(1, 2).contiguous()
- def forward(
- self,
- hidden_states: torch.Tensor,
- ):
- """Input shape: Batch x Time x Channel"""
- bsz, tgt_len, _ = hidden_states.size()
- qkv_states, _ = self.qkv(hidden_states)
- query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
- query_states = query_states.view(bsz, tgt_len,
- self.num_heads_per_partition,
- self.head_dim)
- key_states = key_states.view(bsz, tgt_len,
- self.num_heads_per_partition,
- self.head_dim)
- value_states = value_states.view(bsz, tgt_len,
- self.num_heads_per_partition,
- self.head_dim)
- out = xops.memory_efficient_attention_forward(query_states,
- key_states,
- value_states,
- p=self.dropout,
- scale=self.scale)
- out = out.view(bsz, tgt_len, -1)
- attn_output, _ = self.projection(out)
- return attn_output, None
- class BlipMLP(nn.Module):
- def __init__(self,
- config: BlipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- self.config = config
- self.activation_fn = get_act_fn(config.hidden_act)
- self.fc1 = ColumnParallelLinear(config.hidden_size,
- config.intermediate_size,
- bias=True,
- quant_config=quant_config)
- self.fc2 = RowParallelLinear(config.intermediate_size,
- config.hidden_size,
- bias=True,
- quant_config=quant_config)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states, _ = self.fc1(hidden_states)
- hidden_states = self.activation_fn(hidden_states)
- hidden_states, _ = self.fc2(hidden_states)
- return hidden_states
- class BlipEncoderLayer(nn.Module):
- def __init__(self,
- config: BlipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- # fallback to sdpa attention if tp unavailable
- num_heads = config.num_attention_heads
- tp_size = get_tensor_model_parallel_world_size()
- if USE_XFORMERS_OPS and num_heads % tp_size == 0:
- self.self_attn = BlipParallelAttention(config,
- quant_config=quant_config)
- else:
- # Blip doesn't have SDPA attention implemented in transformers
- # use eager attention instead for cpu backend
- self.self_attn = BlipAttention(config)
- self.layer_norm1 = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- self.mlp = BlipMLP(config, quant_config=quant_config)
- self.layer_norm2 = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- residual = hidden_states
- hidden_states = self.layer_norm1(hidden_states)
- hidden_states, _ = self.self_attn(hidden_states=hidden_states)
- hidden_states = residual + hidden_states
- residual = hidden_states
- hidden_states = self.layer_norm2(hidden_states)
- hidden_states = self.mlp(hidden_states)
- hidden_states = residual + hidden_states
- return hidden_states
- class BlipEncoder(nn.Module):
- """
- Transformer encoder consisting of `config.num_hidden_layers` self
- attention layers. Each layer is a [`BlipEncoderLayer`].
- Args:
- config: BlipConfig
- """
- def __init__(self,
- config: BlipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None,
- num_hidden_layers_override: Optional[int] = None):
- super().__init__()
- self.config = config
- if num_hidden_layers_override is None:
- num_hidden_layers = config.num_hidden_layers
- else:
- num_hidden_layers = num_hidden_layers_override
- self.layers = nn.ModuleList([
- BlipEncoderLayer(config=config, quant_config=quant_config)
- for _ in range(num_hidden_layers)
- ])
- def forward(self, inputs_embeds: torch.Tensor):
- hidden_states = inputs_embeds
- for encoder_layer in self.layers:
- hidden_states = encoder_layer(hidden_states)
- return hidden_states
- class BlipVisionModel(nn.Module):
- config_class = BlipVisionConfig
- main_input_name = "pixel_values"
- def __init__(self,
- config: BlipVisionConfig,
- quant_config: Optional[QuantizationConfig] = None,
- num_hidden_layers_override: Optional[int] = None):
- super().__init__()
- self.config = config
- self.embeddings = BlipVisionEmbeddings(config)
- self.encoder = BlipEncoder(
- config=config,
- quant_config=quant_config,
- num_hidden_layers_override=num_hidden_layers_override,
- )
- self.post_layernorm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
- hidden_states = self.embeddings(pixel_values)
- hidden_states = self.encoder(inputs_embeds=hidden_states)
- return self.post_layernorm(hidden_states)
|