123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- """Custom activation functions."""
- import math
- from typing import Optional
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from aphrodite.distributed import (divide, get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size)
- from aphrodite.modeling._custom_op import CustomOp
- from aphrodite.modeling.utils import set_weight_attrs
- from aphrodite.quantization import QuantizationConfig
- class SiluAndMul(CustomOp):
- """An activation function for SwiGLU.
- The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
- Shapes:
- x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
- return: (num_tokens, d) or (batch_size, seq_len, d)
- """
- def forward_native(self, x: torch.Tensor) -> torch.Tensor:
- """PyTorch-native implementation equivalent to forward()."""
- d = x.shape[-1] // 2
- return F.silu(x[..., :d]) * x[..., d:]
- def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite import _custom_ops as ops
- d = x.shape[-1] // 2
- output_shape = (x.shape[:-1] + (d, ))
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
- ops.silu_and_mul(out, x)
- return out
- def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite._ipex_ops import ipex_ops as ops
- d = x.shape[-1] // 2
- output_shape = (x.shape[:-1] + (d, ))
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
- ops.silu_and_mul(out, x)
- return out
- class GeluAndMul(CustomOp):
- """An activation function for GeGLU.
- The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
- Shapes:
- x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
- return: (batch_size, seq_len, d) or (num_tokens, d)
- """
- def __init__(self, approximate: str = "none"):
- super().__init__()
- self.approximate = approximate
- if approximate not in ("none", "tanh"):
- raise ValueError(f"Unknown approximate mode: {approximate}")
- def forward_native(self, x: torch.Tensor) -> torch.Tensor:
- """PyTorch-native implementation equivalent to forward()."""
- d = x.shape[-1] // 2
- return F.gelu(x[..., :d], approximate=self.approximate) * x[..., d:]
- def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite import _custom_ops as ops
- d = x.shape[-1] // 2
- output_shape = (x.shape[:-1] + (d, ))
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
- if self.approximate == "none":
- ops.gelu_and_mul(out, x)
- elif self.approximate == "tanh":
- ops.gelu_tanh_and_mul(out, x)
- return out
- def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite._ipex_ops import ipex_ops as ops
- d = x.shape[-1] // 2
- output_shape = (x.shape[:-1] + (d, ))
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
- if self.approximate == "none":
- ops.gelu_and_mul(out, x)
- elif self.approximate == "tanh":
- ops.gelu_tanh_and_mul(out, x)
- return out
- def extra_repr(self) -> str:
- return f'approximate={repr(self.approximate)}'
- class NewGELU(CustomOp):
- def forward_native(self, x: torch.Tensor) -> torch.Tensor:
- """PyTorch-native implementation equivalent to forward()."""
- c = math.sqrt(2.0 / math.pi)
- return 0.5 * x * (1.0 + torch.tanh(c *
- (x + 0.044715 * torch.pow(x, 3.0))))
- def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite import _custom_ops as ops
- out = torch.empty_like(x)
- ops.gelu_new(out, x)
- return out
- def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite._ipex_ops import ipex_ops as ops
- return ops.gelu_new(x)
- class FastGELU(CustomOp):
- def forward_native(self, x: torch.Tensor) -> torch.Tensor:
- """PyTorch-native implementation equivalent to forward()."""
- return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 *
- (1.0 + 0.044715 * x * x)))
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite import _custom_ops as ops
- out = torch.empty_like(x)
- ops.gelu_fast(out, x)
- return out
- def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite._ipex_ops import ipex_ops as ops
- return ops.gelu_fast(x)
- class QuickGELU(CustomOp):
- # https://github.com/huggingface/transformers/blob/main/src/transformers/activations.py#L90
- def forward_native(self, x: torch.Tensor) -> torch.Tensor:
- """PyTorch-native implementation equivalent to forward()."""
- return x * torch.sigmoid(1.702 * x)
- def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite import _custom_ops as ops
- out = torch.empty_like(x)
- ops.gelu_quick(out, x)
- return out
- def forward_xpu(self, x: torch.Tensor) -> torch.Tensor:
- from aphrodite._ipex_ops import ipex_ops as ops
- out = torch.empty_like(x)
- ops.gelu_quick(out, x)
- return out
- class ReLUSquaredActivation(CustomOp):
- """
- Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
- """
- def forward_native(self, x: torch.Tensor) -> torch.Tensor:
- """PyTorch-native implementation equivalent to forward()."""
- return torch.square(F.relu(x))
- def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
- return self.forward_native(x)
- class ScaledActivation(nn.Module):
- """An activation function with post-scale parameters.
- This is used for some quantization methods like AWQ.
- """
- def __init__(
- self,
- act_module: nn.Module,
- intermediate_size: int,
- input_is_parallel: bool = True,
- params_dtype: Optional[torch.dtype] = None,
- ):
- super().__init__()
- self.act = act_module
- self.input_is_parallel = input_is_parallel
- if input_is_parallel:
- tp_size = get_tensor_model_parallel_world_size()
- intermediate_size_per_partition = divide(intermediate_size,
- tp_size)
- else:
- intermediate_size_per_partition = intermediate_size
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- self.scales = nn.Parameter(
- torch.empty(intermediate_size_per_partition, dtype=params_dtype))
- set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return self.act(x) / self.scales
- def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
- param_data = param.data
- if self.input_is_parallel:
- tp_rank = get_tensor_model_parallel_rank()
- shard_size = param_data.shape[0]
- start_idx = tp_rank * shard_size
- loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
- assert param_data.shape == loaded_weight.shape
- param_data.copy_(loaded_weight)
- _ACTIVATION_REGISTRY = {
- "gelu": nn.GELU(),
- "gelu_fast": FastGELU(),
- "gelu_new": NewGELU(),
- "gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
- "relu": nn.ReLU(),
- "relu2": ReLUSquaredActivation(),
- "quick_gelu": QuickGELU(),
- }
- def get_act_fn(
- act_fn_name: str,
- quant_config: Optional[QuantizationConfig] = None,
- intermediate_size: Optional[int] = None,
- input_is_parallel: bool = True,
- params_dtype: Optional[torch.dtype] = None,
- ) -> nn.Module:
- """Get an activation function by name."""
- act_fn_name = act_fn_name.lower()
- if act_fn_name not in _ACTIVATION_REGISTRY:
- raise ValueError(
- f"Activation function {act_fn_name!r} is not supported.")
- act_fn = _ACTIVATION_REGISTRY[act_fn_name]
- if (quant_config is not None
- and act_fn_name in quant_config.get_scaled_act_names()):
- if intermediate_size is None:
- raise ValueError("intermediate_size must be specified for scaled "
- "activation functions.")
- return ScaledActivation(act_fn, intermediate_size, input_is_parallel,
- params_dtype)
- return act_fn
|