123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- # coding=utf-8
- # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team.
- # All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Qwen2VL model configuration"""
- import os
- from typing import Union
- from transformers import PretrainedConfig
- class Qwen2VLVisionConfig(PretrainedConfig):
- model_type = "qwen2_vl"
- def __init__(
- self,
- depth=32,
- embed_dim=1280,
- hidden_size=3584,
- hidden_act="quick_gelu",
- mlp_ratio=4,
- num_heads=16,
- in_channels=3,
- patch_size=14,
- spatial_merge_size=2,
- temporal_patch_size=2,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.depth = depth
- self.embed_dim = embed_dim
- self.hidden_size = hidden_size
- self.hidden_act = hidden_act
- self.mlp_ratio = mlp_ratio
- self.num_heads = num_heads
- self.in_channels = in_channels
- self.patch_size = patch_size
- self.spatial_merge_size = spatial_merge_size
- self.temporal_patch_size = temporal_patch_size
- @classmethod
- def from_pretrained(
- cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
- ) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(
- pretrained_model_name_or_path, **kwargs
- )
- if config_dict.get("model_type") == "qwen2_vl":
- config_dict = config_dict["vision_config"]
- return cls.from_dict(config_dict, **kwargs)
- class Qwen2VLConfig(PretrainedConfig):
- def __init__(
- self,
- vocab_size=152064,
- hidden_size=8192,
- intermediate_size=29568,
- num_hidden_layers=80,
- num_attention_heads=64,
- num_key_value_heads=8,
- hidden_act="silu",
- max_position_embeddings=32768,
- initializer_range=0.02,
- rms_norm_eps=1e-05,
- use_cache=True,
- tie_word_embeddings=False,
- rope_theta=1000000.0,
- use_sliding_window=False,
- sliding_window=4096,
- max_window_layers=80,
- attention_dropout=0.0,
- vision_config=None,
- rope_scaling=None,
- **kwargs,
- ):
- if isinstance(vision_config, dict):
- self.vision_config = Qwen2VLVisionConfig(**vision_config)
- elif vision_config is None:
- self.vision_config = Qwen2VLVisionConfig()
- self.vocab_size = vocab_size
- self.max_position_embeddings = max_position_embeddings
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.use_sliding_window = use_sliding_window
- self.sliding_window = sliding_window
- self.max_window_layers = max_window_layers
- # for backward compatibility
- if num_key_value_heads is None:
- num_key_value_heads = num_attention_heads
- self.num_key_value_heads = num_key_value_heads
- self.hidden_act = hidden_act
- self.initializer_range = initializer_range
- self.rms_norm_eps = rms_norm_eps
- self.use_cache = use_cache
- self.rope_theta = rope_theta
- self.attention_dropout = attention_dropout
- self.rope_scaling = rope_scaling
- # NOTE: the following section from original transformers config
- # for Qwen2-VL is commented out to address rope config loading issue
- #
- # if self.rope_scaling is not None and "type" in self.rope_scaling:
- # if self.rope_scaling["type"] == "mrope":
- # self.rope_scaling["type"] = "default"
- # self.rope_scaling["rope_type"] = self.rope_scaling["type"]
- # rope_config_validation(self)
- super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|