image.py 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. from functools import lru_cache
  2. import torch
  3. from loguru import logger
  4. from PIL import Image
  5. from aphrodite.common.config import ModelConfig
  6. from aphrodite.common.utils import is_list_of
  7. from aphrodite.inputs.registry import InputContext
  8. from aphrodite.transformers_utils.processor import get_image_processor
  9. from .base import MultiModalData, MultiModalInputs, MultiModalPlugin
  10. cached_get_image_processor = lru_cache(get_image_processor)
  11. class ImagePlugin(MultiModalPlugin):
  12. """Plugin for image data."""
  13. def get_data_key(self) -> str:
  14. return "image"
  15. def _get_hf_image_processor(self, model_config: ModelConfig):
  16. mm_processor_kwargs = ({} if model_config.mm_processor_kwargs is None
  17. else model_config.mm_processor_kwargs)
  18. # We don't explicitly check kwarg overrides to the HF class
  19. # since the automodel just takes kwargs, so we can't inspect it
  20. return cached_get_image_processor(
  21. model_config.model,
  22. trust_remote_code=model_config.trust_remote_code,
  23. **mm_processor_kwargs)
  24. def _default_input_mapper(
  25. self,
  26. ctx: InputContext,
  27. data: MultiModalData[object],
  28. ) -> MultiModalInputs:
  29. model_config = ctx.model_config
  30. # PIL image
  31. if isinstance(data, Image.Image) or is_list_of(data, Image.Image):
  32. image_processor = self._get_hf_image_processor(model_config)
  33. if image_processor is None:
  34. raise RuntimeError("No HuggingFace processor is available "
  35. "to process the image object")
  36. try:
  37. batch_data = image_processor \
  38. .preprocess(data, return_tensors="pt") \
  39. .data
  40. except Exception:
  41. logger.error(f"Failed to process image ({data})")
  42. raise
  43. return MultiModalInputs(batch_data)
  44. # Image embedding
  45. elif isinstance(data, torch.Tensor) or is_list_of(data, torch.Tensor):
  46. return MultiModalInputs({"image_embeds": data})
  47. raise TypeError(f"Invalid image type: {type(data)}")
  48. def _default_max_multimodal_tokens(self, ctx: InputContext) -> int:
  49. return 3000