123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556 |
- # coding=utf-8
- # Adapted from
- # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
- # Copyright 2023 The PygmalionAI team.
- # Copyright 2023 The vLLM team.
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only MiniCPM model compatible with HuggingFace weights."""
- import math
- from typing import Any, Dict, Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from transformers import PretrainedConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig, LoRAConfig
- from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
- from aphrodite.common.utils import progress_bar
- from aphrodite.distributed import (get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size,
- tensor_model_parallel_all_reduce)
- from aphrodite.modeling.layers.activation import SiluAndMul
- from aphrodite.modeling.layers.fused_moe import fused_moe
- from aphrodite.modeling.layers.layernorm import RMSNorm
- from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear,
- QKVParallelLinear,
- ReplicatedLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.models.interfaces import SupportsLoRA
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.modeling.utils import set_weight_attrs
- from aphrodite.quantization.base_config import QuantizationConfig
- class MiniCPMMoE(nn.Module):
- """A tensor-parallel MoE implementation that shards each expert
- across all ranks.
- Each expert's weights are sharded across all ranks and a fused MoE
- kernel is used for the forward pass, and finally we reduce the outputs
- across ranks.
- """
- def __init__(
- self,
- num_experts: int,
- top_k: int,
- hidden_size: int,
- intermediate_size: int,
- params_dtype: Optional[torch.dtype] = None,
- tp_size: Optional[int] = None,
- ):
- super().__init__()
- self.tp_size = tp_size or get_tensor_model_parallel_world_size()
- self.num_total_experts = num_experts
- self.top_k = top_k
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size // self.tp_size
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- self.params_dtype = params_dtype
- self.gate = ReplicatedLinear(self.hidden_size,
- self.num_total_experts,
- bias=False,
- params_dtype=self.params_dtype,
- quant_config=None)
- self.ws = nn.Parameter(
- torch.empty(self.num_total_experts,
- 2 * self.intermediate_size,
- self.hidden_size,
- device="cuda",
- dtype=self.params_dtype))
- self.w2s = nn.Parameter(
- torch.empty(self.num_total_experts,
- self.hidden_size,
- self.intermediate_size,
- device="cuda",
- dtype=self.params_dtype))
- set_weight_attrs(self.ws, {
- "weight_loader": self.weight_loader,
- })
- set_weight_attrs(self.w2s, {
- "weight_loader": self.weight_loader,
- })
- def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
- weight_name: str, expert_id: int):
- tp_rank = get_tensor_model_parallel_rank()
- param_data = param.data
- shard_size = self.intermediate_size
- shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
- if weight_name.endswith("w1.weight"):
- param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :]
- if weight_name.endswith("w3.weight"):
- param_data[expert_id,
- shard_size:2 * shard_size, :] = loaded_weight[shard, :]
- if weight_name.endswith("w2.weight"):
- param_data[expert_id, :, :] = loaded_weight[:, shard]
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- num_tokens, hidden_size = hidden_states.shape
- hidden_states = hidden_states.view(-1, self.hidden_size)
- # router_logits: (num_tokens, n_experts)
- router_logits, _ = self.gate(hidden_states)
- final_hidden_states = fused_moe(hidden_states,
- self.ws,
- self.w2s,
- router_logits,
- self.top_k,
- renormalize=True,
- inplace=True)
- if self.tp_size > 1:
- final_hidden_states = tensor_model_parallel_all_reduce(
- final_hidden_states)
- return final_hidden_states.view(num_tokens, hidden_size)
- class MiniCPMMLP(nn.Module):
- def __init__(
- self,
- hidden_size: int,
- intermediate_size: int,
- hidden_act: str,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.gate_up_proj = MergedColumnParallelLinear(
- hidden_size, [intermediate_size] * 2,
- bias=False,
- quant_config=quant_config)
- self.down_proj = RowParallelLinear(intermediate_size,
- hidden_size,
- bias=False,
- quant_config=quant_config)
- if hidden_act != "silu":
- raise ValueError(f"Unsupported activation: {hidden_act}. "
- "Only silu is supported for now.")
- self.act_fn = SiluAndMul()
- def forward(self, x):
- gate_up, _ = self.gate_up_proj(x)
- x = self.act_fn(gate_up)
- x, _ = self.down_proj(x)
- return x
- class MiniCPMAttention(nn.Module):
- def __init__(
- self,
- hidden_size: int,
- num_heads: int,
- num_kv_heads: int,
- rope_theta: float = 10000,
- rope_scaling: Optional[Dict[str, Any]] = None,
- max_position_embeddings: int = 8192,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.hidden_size = hidden_size
- tp_size = get_tensor_model_parallel_world_size()
- self.total_num_heads = num_heads
- assert self.total_num_heads % tp_size == 0
- self.num_heads = self.total_num_heads // tp_size
- self.total_num_kv_heads = num_kv_heads
- if self.total_num_kv_heads >= tp_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- self.head_dim = hidden_size // self.total_num_heads
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.scaling = self.head_dim**-0.5
- self.rope_theta = rope_theta
- self.max_position_embeddings = max_position_embeddings
- self.qkv_proj = QKVParallelLinear(
- hidden_size,
- self.head_dim,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=False,
- quant_config=quant_config,
- )
- self.o_proj = RowParallelLinear(
- self.total_num_heads * self.head_dim,
- hidden_size,
- bias=False,
- quant_config=quant_config,
- )
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim,
- max_position=max_position_embeddings,
- base=rope_theta,
- rope_scaling=rope_scaling,
- )
- # set rope as fp32 instead of bf16
- self.rotary_emb.cos_sin_cache = self.rotary_emb._compute_cos_sin_cache(
- )
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, _ = self.qkv_proj(hidden_states)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- orig_dtype = q.dtype
- q, k = q.float(), k.float()
- q, k = self.rotary_emb(positions, q, k)
- q, k = q.to(orig_dtype), k.to(orig_dtype)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.o_proj(attn_output)
- return output
- class MiniCPMDecoderLayer(nn.Module):
- def __init__(
- self,
- config,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.config = config
- self.hidden_size = config.hidden_size
- rope_theta = getattr(config, "rope_theta", 10000)
- rope_scaling = getattr(config, "rope_scaling", None)
- max_position_embeddings = getattr(config, "max_position_embeddings",
- 8192)
- self.self_attn = MiniCPMAttention(
- hidden_size=self.hidden_size,
- num_heads=config.num_attention_heads,
- num_kv_heads=config.num_key_value_heads,
- rope_theta=rope_theta,
- rope_scaling=rope_scaling,
- max_position_embeddings=max_position_embeddings,
- cache_config=cache_config,
- quant_config=quant_config,
- )
- self.num_experts = getattr(self.config, "num_experts", 0)
- if self.num_experts == 0:
- self.mlp = MiniCPMMLP(
- hidden_size=self.hidden_size,
- intermediate_size=config.intermediate_size,
- hidden_act=config.hidden_act,
- quant_config=quant_config,
- )
- else:
- self.mlp = MiniCPMMoE(num_experts=config.num_experts,
- top_k=config.num_experts_per_tok,
- hidden_size=config.hidden_size,
- intermediate_size=config.intermediate_size)
- self.input_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- self.post_attention_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- residual: Optional[torch.Tensor],
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- # Self Attention
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- hidden_states = self.self_attn(
- positions=positions,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- hidden_states = residual + hidden_states * \
- (self.config.scale_depth / math.sqrt(self.config.num_hidden_layers))
- # Fully Connected
- residual = hidden_states
- hidden_states = self.post_attention_layernorm(hidden_states)
- hidden_states = self.mlp(hidden_states)
- hidden_states = residual + hidden_states * \
- (self.config.scale_depth / math.sqrt(self.config.num_hidden_layers))
- return hidden_states, None
- class MiniCPMModel(nn.Module):
- def __init__(
- self,
- config,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- ) -> None:
- super().__init__()
- self.config = config
- self.padding_idx = config.pad_token_id
- lora_vocab = (lora_config.lora_extra_vocab_size *
- (lora_config.max_loras or 1)) if lora_config else 0
- self.vocab_size = config.vocab_size + lora_vocab
- self.org_vocab_size = config.vocab_size
- self.embed_tokens = VocabParallelEmbedding(
- self.vocab_size,
- config.hidden_size,
- org_num_embeddings=config.vocab_size,
- )
- self.layers = nn.ModuleList([
- MiniCPMDecoderLayer(config, cache_config, quant_config)
- for _ in range(config.num_hidden_layers)
- ])
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
- embedding = self.embed_tokens(input_ids)
- return embedding * self.config.scale_emb
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- if inputs_embeds is not None:
- hidden_states = inputs_embeds
- else:
- hidden_states = self.get_input_embeddings(input_ids)
- residual = None
- for i in range(len(self.layers)):
- layer = self.layers[i]
- hidden_states, residual = layer(
- positions,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- residual,
- )
- hidden_states = self.norm(hidden_states)
- return hidden_states
- class MiniCPMForCausalLM(nn.Module, SupportsLoRA):
- packed_modules_mapping = {
- "qkv_proj": [
- "q_proj",
- "k_proj",
- "v_proj",
- ],
- "gate_up_proj": [
- "gate_proj",
- "up_proj",
- ],
- }
- # LoRA specific attributes
- supported_lora_modules = [
- "qkv_proj",
- "o_proj",
- "gate_up_proj",
- "down_proj",
- "embed_tokens",
- "lm_head",
- ]
- embedding_modules = {
- "embed_tokens": "input_embeddings",
- "lm_head": "output_embeddings",
- }
- embedding_padding_modules = ["lm_head"]
- def __init__(
- self,
- config: PretrainedConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- ) -> None:
- super().__init__()
- self.config = config
- self.lora_config = lora_config
- self.num_experts = getattr(self.config, "num_experts", 0)
- self.quant_config = quant_config
- self.model = MiniCPMModel(config,
- cache_config,
- quant_config,
- lora_config=lora_config)
- unpadded_vocab_size = config.vocab_size
- if lora_config:
- unpadded_vocab_size += lora_config.lora_extra_vocab_size
- if not self.config.tie_word_embeddings:
- self.lm_head = ParallelLMHead(
- unpadded_vocab_size,
- config.hidden_size,
- org_num_embeddings=config.vocab_size,
- padding_size=DEFAULT_VOCAB_PADDING_SIZE
- # We need bigger padding if using lora for kernel
- # compatibility
- if not lora_config else lora_config.lora_vocab_padding_size,
- quant_config=quant_config,
- )
- self.scale_width = self.config.hidden_size / self.config.dim_model_base
- self.logits_processor = LogitsProcessor(unpadded_vocab_size,
- config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- hidden_states = self.model(input_ids, positions, kv_caches,
- attn_metadata, intermediate_tensors)
- return hidden_states
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- hidden_states = hidden_states / self.scale_width
- if self.config.tie_word_embeddings:
- lm_head = self.model.embed_tokens
- else:
- lm_head = self.lm_head
- logits = self.logits_processor(lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- stacked_params_mapping = [
- # (param_name, shard_name, shard_id)
- ("qkv_proj", "q_proj", "q"),
- ("qkv_proj", "k_proj", "k"),
- ("qkv_proj", "v_proj", "v"),
- ("gate_up_proj", "gate_proj", 0),
- ("gate_up_proj", "up_proj", 1),
- ]
- expert_params_mapping = [
- # (param_name, weight_name, expert_id)
- ("ws" if weight_name in ["w1", "w3"] else "w2s",
- f"experts.{expert_id}.{weight_name}.weight", expert_id)
- for expert_id in range(self.num_experts)
- for weight_name in ["w1", "w2", "w3"]
- ]
- params_dict = dict(self.named_parameters())
- weights_list = list(weights)
- for name, loaded_weight in progress_bar(weights_list,
- desc="Loading modules..."):
- if "rotary_emb.inv_freq" in name:
- continue
- if ("rotary_emb.cos_cached" in name
- or "rotary_emb.sin_cached" in name):
- # Models trained using ColossalAI may include these tensors in
- # the checkpoint. Skip them.
- continue
- # With tie_word_embeddings, we can skip lm_head.weight
- # The weight might appear unnecessarily in the files if the model is
- # processed with quantization, LoRA, fine-tuning, etc.
- if self.config.tie_word_embeddings and "lm_head.weight" in name:
- continue
- for (param_name, weight_name, shard_id) in stacked_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- for param_name, weight_name, expert_id in expert_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param,
- loaded_weight,
- weight_name,
- expert_id=expert_id)
- break
- else:
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|