12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- from functools import lru_cache
- import torch
- from loguru import logger
- from PIL import Image
- from aphrodite.common.config import ModelConfig
- from aphrodite.common.utils import is_list_of
- from aphrodite.inputs.registry import InputContext
- from aphrodite.transformers_utils.image_processor import get_image_processor
- from .base import MultiModalData, MultiModalInputs, MultiModalPlugin
- cached_get_image_processor = lru_cache(get_image_processor)
- class ImagePlugin(MultiModalPlugin):
- """Plugin for image data."""
- def get_data_key(self) -> str:
- return "image"
- def _get_hf_image_processor(self, model_config: ModelConfig):
- return cached_get_image_processor(
- model_config.model,
- trust_remote_code=model_config.trust_remote_code)
- def _default_input_mapper(
- self,
- ctx: InputContext,
- data: MultiModalData[object],
- ) -> MultiModalInputs:
- model_config = ctx.model_config
- # PIL image
- if isinstance(data, Image.Image) or is_list_of(data, Image.Image):
- image_processor = self._get_hf_image_processor(model_config)
- if image_processor is None:
- raise RuntimeError("No HuggingFace processor is available "
- "to process the image object")
- try:
- batch_data = image_processor \
- .preprocess(data, return_tensors="pt") \
- .data
- except Exception:
- logger.error("Failed to process image (%s)", data)
- raise
- return MultiModalInputs(batch_data)
- # Image embedding
- elif isinstance(data, torch.Tensor) or is_list_of(data, torch.Tensor):
- return MultiModalInputs({"image_embeds": data})
- raise TypeError(f"Invalid image type: {type(data)}")
- def _default_max_multimodal_tokens(self, ctx: InputContext) -> int:
- return 3000
|