123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- from typing import Any, Dict, List, Optional
- from contextlib import suppress
- import torch
- from torch.nn.parameter import Parameter
- from aphrodite.modeling.layers.linear import (LinearMethodBase,
- set_weight_attrs)
- from aphrodite.quantization.base_config import (QuantizationConfig)
- HAS_QUANTS = False
- with suppress(ImportError):
- from aphrodite._quant_C import quant_ops as ops
- HAS_QUANTS = True
- class MarlinConfig(QuantizationConfig):
- """Config class for Marlin.
- Reference: https://github.com/IST-DASLab/marlin/tree/master
- """
- def __init__(
- self,
- group_size: int,
- ) -> None:
- if not HAS_QUANTS:
- raise ImportError("Could not find the quantization kernels.")
- # Group size for the quantization.
- self.group_size = group_size
- if self.group_size != 128 and self.group_size != -1:
- raise ValueError(
- "Currently, only group size 128 and -1 (channelwise) "
- "is supported for Marlin, but got group_size of "
- f"{self.group_size}")
- # 4 Bits packed into 32 bit datatype.
- self.pack_factor = 32 // 4
- # Tile size used by marlin kernels.
- self.tile_size = 16
- # Min out_features dim
- self.min_n_threads = 64
- # Min in_features dim
- self.min_k_threads = 128
- # Max parallel problems to solve at once (improves large
- # batch performance)
- self.max_parallel = 16
- # Permutation length used by the marlin kernels.
- self.perm_len = 1024
- def __repr__(self) -> str:
- return f"MarlinConfig(group_size={self.group_size})"
- @classmethod
- def get_name(cls) -> str:
- return "marlin"
- @classmethod
- def get_supported_act_dtypes(cls) -> List[torch.dtype]:
- return [torch.half]
- @classmethod
- # Need to figure it out
- def get_min_capability(cls) -> int:
- return 80
- @classmethod
- def get_config_filenames(cls) -> List[str]:
- return ["quantize_config.json"]
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "MarlinConfig":
- group_size = cls.get_from_keys(config, ["group_size"])
- return cls(group_size)
- def get_linear_method(self) -> "MarlinLinearMethod":
- return MarlinLinearMethod(self)
- def get_scaled_act_names(self) -> List[str]:
- return []
- def merge_weight(self) -> bool:
- return True
- def quant_vocab(self) -> List[bool]:
- return [False, False]
- def support_fused_moe(self) -> bool:
- return False
- def rope_style(self) -> Optional[bool]:
- return None
- class MarlinLinearMethod(LinearMethodBase):
- """Linear method for Marlin.
- Args:
- quant_config: The Marlin quantization config.
- """
- def __init__(self, quant_config: MarlinConfig):
- self.quant_config = quant_config
- def create_weights(
- self,
- input_size_per_partition: int,
- output_partition_sizes: List[int],
- input_size: int,
- output_size: int,
- params_dtype: torch.dtype,
- ) -> Dict[str, Any]:
- del output_size # Unused.
- if params_dtype != torch.float16:
- raise ValueError(
- f"The params dtype must be float16, but got {params_dtype}")
- output_size_per_partition = sum(output_partition_sizes)
- # Validate output_size_per_partition
- if output_size_per_partition % self.quant_config.min_n_threads != 0:
- raise ValueError(
- f"Weight output_size_per_partition = "
- f"{output_size_per_partition} is not divisible by "
- f"min_n_threads = {self.quant_config.min_n_threads}.")
- if output_size_per_partition % self.quant_config.pack_factor != 0:
- raise ValueError(
- f"Weight output_size_per_partition = "
- f"{output_size_per_partition} is not divisible by "
- f"pack_factor = {self.quant_config.pack_factor}.")
- # Validate input_size_per_partition
- if input_size_per_partition % self.quant_config.min_k_threads != 0:
- raise ValueError(
- f"Weight input_size_per_partition = "
- f"{input_size_per_partition} is not divisible by "
- f"min_k_threads = {self.quant_config.min_k_threads}.")
- if (self.quant_config.group_size != -1 and
- input_size_per_partition % self.quant_config.group_size != 0):
- raise ValueError(f"Weight input_size_per_partition = "
- f"{input_size_per_partition} is not divisible by "
- f"group_size = {self.quant_config.group_size}.")
- # Check that we have at least 4 tiles horizontally in the shard
- num_tiles_per_perm = self.quant_config.perm_len // (
- self.quant_config.tile_size**2)
- if output_size_per_partition % num_tiles_per_perm != 0:
- raise ValueError(
- "Each permutation group must reside on the same gpu")
- # Quantized 4Bit weights packed into Int32.
- qweight = Parameter(
- torch.empty(
- input_size_per_partition // self.quant_config.tile_size,
- output_size_per_partition * self.quant_config.tile_size //
- self.quant_config.pack_factor,
- device="cuda",
- dtype=torch.int32,
- ),
- requires_grad=False,
- )
- set_weight_attrs(
- qweight,
- {
- "input_dim": 0,
- "output_dim": 1,
- "packed_dim": 1,
- "pack_factor": self.quant_config.pack_factor,
- "marlin_tile_size": self.quant_config.tile_size,
- },
- )
- # Determine if channelwise or not
- input_groups = (1 if self.quant_config.group_size == -1 else
- input_size_per_partition //
- self.quant_config.group_size)
- scales = Parameter(
- torch.empty(
- input_groups,
- output_size_per_partition,
- device="cuda",
- dtype=params_dtype,
- ),
- requires_grad=False,
- )
- set_weight_attrs(
- scales,
- {
- "input_dim": None if input_groups == 1 else 0,
- "output_dim": 1,
- },
- )
- # Allocate workspace (Used for internal locking mechanism)
- max_workspace_size = (
- output_size_per_partition //
- self.quant_config.min_n_threads) * self.quant_config.max_parallel
- workspace = Parameter(torch.zeros(max_workspace_size,
- device="cuda",
- dtype=torch.int),
- requires_grad=False)
- return {
- "B": qweight,
- "s": scales,
- "workspace": workspace,
- }
- def apply_weights(
- self,
- weights: Dict[str, Any],
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- qweight = weights["B"]
- scales = weights["s"]
- workspace = weights["workspace"]
- x_2d = x.view(-1, x.shape[-1])
- size_m = x_2d.shape[0]
- size_k = x_2d.shape[1]
- size_n = scales.shape[1]
- output_2d = ops.marlin_gemm(x_2d, qweight, scales, workspace, size_m,
- size_n, size_k)
- output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))
- if bias is not None:
- output.add_(bias) # In-place add
- return output
- def apply_moe_weights(self, w1: Dict[str,
- torch.Tensor], w2: Dict[str,
- torch.Tensor],
- x: torch.Tensor, gating_output: torch.Tensor,
- topk: int, renormalize: bool) -> torch.Tensor:
- raise NotImplementedError
|