123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- import os
- import tempfile
- from typing import Optional, Union
- from transformers import (AutoTokenizer, PreTrainedTokenizer,
- PreTrainedTokenizerFast, LlamaTokenizer)
- from transformers.convert_slow_tokenizer import import_protobuf
- from loguru import logger
- from aphrodite.lora.request import LoRARequest
- from aphrodite.common.utils import make_async
- from aphrodite.common.gguf import GGUFReader
- from aphrodite.transformers_utils.tokenizers import BaichuanTokenizer
- def convert_gguf_to_tokenizer(checkpoint):
- if os.path.isfile(checkpoint):
- result = GGUFReader(checkpoint)
- elif os.path.isdir(checkpoint):
- try:
- return AutoTokenizer.from_pretrained(checkpoint)
- except Exception:
- pass
- all_gguf_files = sorted([
- file for file in os.listdir(checkpoint)
- if os.path.splitext(file)[-1].lower() == ".gguf"
- ])
- # assume the tokenizer is always in the first shard
- result = GGUFReader(os.path.join(checkpoint, all_gguf_files[0]))
- else:
- raise RuntimeError(f"Cannot find any tokenizer with `{checkpoint}`")
- logger.log_once("INFO", "Converting tokenizer from GGUF...")
- # write vocab
- sentencepiece_model_pb2 = import_protobuf()
- vocab = sentencepiece_model_pb2.ModelProto()
- vocab_size = len(result.fields['tokenizer.ggml.token_type'].data)
- vocab.trainer_spec.model_type = 2 # BPE
- vocab.trainer_spec.vocab_size = vocab_size
- vocab.trainer_spec.byte_fallback = True
- vocab.normalizer_spec.remove_extra_whitespaces = False
- tokens = result.fields['tokenizer.ggml.tokens']
- scores = result.fields['tokenizer.ggml.scores']
- types = result.fields['tokenizer.ggml.token_type']
- for i in range(vocab_size):
- new_token = vocab.SentencePiece()
- new_token.piece = str(bytes(tokens.parts[tokens.data[i]]),
- encoding='utf-8')
- new_token.score = scores.parts[scores.data[i]]
- # llama.cpp tokentype is the same with sentencepiece token type
- new_token.type = int(types.parts[types.data[i]])
- vocab.pieces.append(new_token)
- with tempfile.NamedTemporaryFile(mode='wb', delete=False) as temp_file:
- temp_file.write(vocab.SerializeToString())
- temp_file_filename = temp_file.name
- tokenizer_args = {"vocab_file": temp_file_filename}
- if 'tokenizer.ggml.bos_token_id' in result.fields:
- tokenizer_args["bos_token"] = vocab.pieces[int(
- result.fields['tokenizer.ggml.bos_token_id'].parts[-1])].piece
- if 'tokenizer.ggml.eos_token_id' in result.fields:
- tokenizer_args["eos_token"] = vocab.pieces[int(
- result.fields['tokenizer.ggml.eos_token_id'].parts[-1])].piece
- if 'tokenizer.ggml.padding_token_id' in result.fields:
- tokenizer_args["pad_token"] = vocab.pieces[int(
- result.fields['tokenizer.ggml.padding_token_id'].parts[-1])].piece
- if 'tokenizer.ggml.unknown_token_id' in result.fields:
- tokenizer_args["unk_token"] = vocab.pieces[int(
- result.fields['tokenizer.ggml.unknown_token_id'].parts[-1])].piece
- if 'tokenizer.ggml.add_bos_token' in result.fields:
- tokenizer_args["add_bos_token"] = bool(
- result.fields['tokenizer.ggml.add_bos_token'].parts[-1])
- if 'tokenizer.ggml.add_eos_token' in result.fields:
- tokenizer_args["add_eos_token"] = bool(
- result.fields['tokenizer.ggml.add_eos_token'].parts[-1])
- if 'tokenizer.chat_template' in result.fields:
- tokenizer_args["chat_template"] = str(
- bytes(result.fields['tokenizer.chat_template'].parts[-1]))
- tokenizer = LlamaTokenizer(**tokenizer_args)
- os.unlink(temp_file_filename)
- return tokenizer
- def get_cached_tokenizer(
- tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
- ) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
- """Get tokenizer with cached properties.
-
- This will patch the tokenizer object in place.
-
- By default, transformers will recompute multiple tokenizer
- properties each time they are called, leading to a significant
- slowdown. This function caches these properties for faster
- access."""
- tokenizer_all_special_ids = set(tokenizer.all_special_ids)
- tokenizer_all_special_tokens_extended = (
- tokenizer.all_special_tokens_extended)
- tokenizer_all_special_tokens = set(tokenizer.all_special_tokens)
- tokenizer_len = len(tokenizer)
- class CachedTokenizer(tokenizer.__class__):
- @property
- def all_special_ids(self):
- return tokenizer_all_special_ids
- @property
- def all_special_tokens(self):
- return tokenizer_all_special_tokens
- @property
- def all_special_tokens_extended(self):
- return tokenizer_all_special_tokens_extended
- def __len__(self):
- return tokenizer_len
- CachedTokenizer.__name__ = f"Cached{tokenizer.__class__.__name__}"
- tokenizer.__class__ = CachedTokenizer
- return tokenizer
- def get_tokenizer(
- tokenizer_name: str,
- *args,
- tokenizer_mode: str = "auto",
- trust_remote_code: bool = False,
- tokenizer_revision: Optional[str] = None,
- **kwargs,
- ) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
- """Gets a tokenizer for the given model name via Huggingface."""
- if tokenizer_name.endswith("gguf"):
- return convert_gguf_to_tokenizer(tokenizer_name)
- if tokenizer_mode == "slow":
- if kwargs.get("use_fast", False):
- raise ValueError(
- "Cannot use the fast tokenizer in slow tokenizer mode.")
- kwargs["use_fast"] = False
- try:
- tokenizer = AutoTokenizer.from_pretrained(
- tokenizer_name,
- *args,
- trust_remote_code=trust_remote_code,
- tokenizer_revision=tokenizer_revision,
- **kwargs)
- except ValueError as e:
- # If the error pertains to the tokenizer class not existing or not
- # currently being imported, suggest using the --trust-remote-code flag.
- if (not trust_remote_code and
- ("does not exist or is not currently imported." in str(e)
- or "requires you to execute the tokenizer file" in str(e))):
- err_msg = (
- "Failed to load the tokenizer. If the tokenizer is a custom "
- "tokenizer not yet available in the HuggingFace transformers "
- "library, consider setting `trust_remote_code=True` in LLM "
- "or using the `--trust-remote-code` flag in the CLI.")
- raise RuntimeError(err_msg) from e
- else:
- raise e
- except AttributeError as e:
- if "BaichuanTokenizer" in str(e):
- # This is for the error "'BaichuanTokenizer' object has no
- # attribute 'sp_model'".
- tokenizer = BaichuanTokenizer.from_pretrained(
- tokenizer_name,
- *args,
- trust_remote_code=trust_remote_code,
- tokenizer_revision=tokenizer_revision,
- **kwargs)
- else:
- raise e
- if not isinstance(tokenizer, PreTrainedTokenizerFast):
- logger.warning(
- "Using a slow tokenizer. This might cause a significant "
- "slowdown. Consider using a fast tokenizer instead.")
- return get_cached_tokenizer(tokenizer)
- def get_lora_tokenizer(lora_request: LoRARequest, *args,
- **kwargs) -> Optional[PreTrainedTokenizer]:
- if lora_request is None:
- return None
- try:
- tokenizer = get_tokenizer(lora_request.lora_local_path, *args,
- **kwargs)
- except OSError as e:
- # No tokenizer was found in the LoRA folder,
- # use base model tokenizer
- logger.warning(
- f"No tokenizer found in {lora_request.lora_local_path}, "
- "using base model tokenizer instead. "
- f"(Exception: {str(e)})")
- tokenizer = None
- return tokenizer
- get_lora_tokenizer_async = make_async(get_lora_tokenizer)
|