123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
- from typing import Dict, List, Optional, Tuple
- import torch
- from aphrodite.attention import AttentionMetadata, get_attn_backend
- from aphrodite.common.config import (
- DeviceConfig,
- LoRAConfig,
- ModelConfig,
- ParallelConfig,
- SchedulerConfig,
- )
- from aphrodite.common.sampling_params import SamplingParams, SamplingType
- from aphrodite.common.sequence import (
- SamplerOutput,
- SequenceData,
- SequenceGroupMetadata,
- )
- from aphrodite.common.utils import make_tensor_with_pad, maybe_expand_dim
- from aphrodite.distributed import broadcast_tensor_dict
- from aphrodite.modeling import SamplingMetadata
- from aphrodite.modeling.loader import get_model
- _PAD_SLOT_ID = -1
- class CPUModelRunner:
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- lora_config: Optional[LoRAConfig],
- kv_cache_dtype: Optional[str] = "auto",
- is_driver_worker: bool = False,
- *args,
- **kwargs,
- ):
- self.model_config = model_config
- self.parallel_config = parallel_config
- self.scheduler_config = scheduler_config
- self.lora_config = lora_config
- self.is_driver_worker = is_driver_worker
- # model_config can be None in tests/samplers/test_sampler.py.
- # FIXME: This is a hack to make the tests work. Refactor this.
- self.sliding_window = (model_config.get_sliding_window()
- if model_config is not None else None)
- self.device_config = (device_config
- if device_config is not None else DeviceConfig())
- self.device = self.device_config.device
- self.model = None
- self.block_size = None # Set after initial profiling.
- self.kv_cache_dtype = kv_cache_dtype
- self.attn_backend = get_attn_backend(
- self.model_config.dtype if model_config is not None else None)
- def load_model(self) -> None:
- self.model = get_model(self.model_config,
- self.device_config,
- lora_config=self.lora_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config)
- def _prepare_prompt(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int]]:
- assert len(seq_group_metadata_list) > 0
- input_tokens: List[int] = []
- input_positions: List[int] = []
- slot_mapping: List[int] = []
- prompt_lens: List[int] = []
- for seq_group_metadata in seq_group_metadata_list:
- assert seq_group_metadata.is_prompt
- seq_ids = list(seq_group_metadata.seq_data.keys())
- assert len(seq_ids) == 1
- seq_id = seq_ids[0]
- seq_data = seq_group_metadata.seq_data[seq_id]
- prompt_tokens = seq_data.get_token_ids()
- computed_len = seq_data.get_num_computed_tokens()
- prompt_len = len(prompt_tokens)
- prompt_lens.append(prompt_len) # Prompt token num
- input_tokens.extend(prompt_tokens) # Token ids
- # Token position ids
- # NOTE: Here we assume that the first token in the prompt
- # is always the first token in the sequence.
- input_positions.extend(list(range(computed_len, prompt_len)))
- # Compute the slot mapping.
- block_table = seq_group_metadata.block_tables[seq_id]
- # Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
- # where start_idx is max(0, prompt_len - sliding_window).
- # For example, if the prompt len is 10, sliding window is 8, and
- # block size is 4, the first two tokens are masked and the slot
- # mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
- start_idx = 0
- if self.sliding_window is not None:
- start_idx = max(0, prompt_len - self.sliding_window)
- for i in range(computed_len, prompt_len):
- if i < start_idx:
- slot_mapping.append(_PAD_SLOT_ID)
- continue
- block_number = block_table[i //
- self.block_size] # type: ignore
- block_offset = i % self.block_size # type: ignore
- slot = block_number * self.block_size + block_offset
- slot_mapping.append(slot)
- num_prompt_tokens = len(input_tokens)
- input_tokens = torch.tensor(input_tokens,
- dtype=torch.long,
- device=self.device) # type: ignore
- input_positions = torch.tensor(input_positions,
- dtype=torch.long,
- device=self.device) # type: ignore
- slot_mapping = torch.tensor(slot_mapping,
- dtype=torch.long,
- device=self.device) # type: ignore
- attn_metadata = self.attn_backend.make_metadata(
- is_prompt=True,
- prompt_lens=prompt_lens,
- num_prefills=len(prompt_lens),
- num_prefill_tokens=num_prompt_tokens,
- num_decode_tokens=0,
- prefill_metadata=None,
- decode_metadata=None,
- max_context_len=None,
- context_lens=None,
- block_tables=torch.tensor([]),
- slot_mapping=slot_mapping,
- kv_cache_dtype=self.kv_cache_dtype,
- )
- return (
- input_tokens,
- input_positions,
- attn_metadata,
- prompt_lens,
- )
- def _prepare_decode(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
- assert len(seq_group_metadata_list) > 0
- input_tokens: List[int] = []
- input_positions: List[int] = []
- slot_mapping: List[int] = []
- context_lens: List[int] = []
- block_tables: List[List[int]] = []
- for seq_group_metadata in seq_group_metadata_list:
- assert not seq_group_metadata.is_prompt
- assert seq_group_metadata.token_chunk_size == 1
- seq_ids = list(seq_group_metadata.seq_data.keys())
- for seq_id in seq_ids:
- seq_data = seq_group_metadata.seq_data[seq_id]
- generation_token = seq_data.get_last_token_id()
- input_tokens.append(generation_token)
- seq_len = seq_data.get_len()
- position = seq_len - 1
- input_positions.append(position)
- context_len = seq_len if self.sliding_window is None else min(
- seq_len, self.sliding_window)
- context_lens.append(context_len)
- block_table = seq_group_metadata.block_tables[seq_id]
- block_number = block_table[position // self.block_size]
- block_offset = position % self.block_size
- slot = block_number * self.block_size + block_offset
- slot_mapping.append(slot)
- if self.sliding_window is not None:
- sliding_window_blocks = (self.sliding_window //
- self.block_size)
- block_table = block_table[-sliding_window_blocks:]
- block_tables.append(block_table)
- max_context_len = max(context_lens)
- input_tokens = torch.tensor(input_tokens,
- dtype=torch.long,
- device=self.device)
- input_positions = torch.tensor(input_positions,
- dtype=torch.long,
- device=self.device)
- slot_mapping = torch.tensor(slot_mapping,
- dtype=torch.long,
- device=self.device)
- context_lens = torch.tensor(context_lens,
- dtype=torch.int,
- device=self.device)
- max_block_table_len = max(
- len(block_table) for block_table in block_tables)
- block_tables = make_tensor_with_pad(
- block_tables,
- max_len=max_block_table_len,
- pad=0,
- dtype=torch.int,
- device=self.device,
- )
- attn_metadata = self.attn_backend.make_metadata(
- is_prompt=False,
- slot_mapping=slot_mapping,
- prompt_lens=None,
- num_prefill_tokens=0,
- num_decode_tokens=len(input_tokens),
- max_context_len=max_context_len,
- num_prefills=0,
- prefill_metadata=None,
- decode_metadata=None,
- context_lens=context_lens,
- block_tables=block_tables,
- kv_cache_dtype=self.kv_cache_dtype,
- )
- return (
- input_tokens,
- input_positions,
- attn_metadata,
- )
- def _prepare_sample(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- prompt_lens: List[int],
- ) -> SamplingMetadata:
- seq_groups: List[Tuple[List[int], SamplingParams]] = []
- selected_token_indices: List[int] = []
- generators: List[torch.Generator] = []
- selected_token_start_idx = 0
- categorized_sample_indices = {t: [] for t in SamplingType}
- categorized_sample_indices_start_idx = 0
- categorized_sampled_token_indices_start_idx = 0
- for i, seq_group_metadata in enumerate(seq_group_metadata_list):
- seq_ids = list(seq_group_metadata.seq_data.keys())
- sampling_params = seq_group_metadata.sampling_params
- seq_groups.append((seq_ids, sampling_params))
- if seq_group_metadata.is_prompt:
- assert len(seq_ids) == 1
- subquery_len = prompt_lens[i]
- if sampling_params.prompt_logprobs is not None:
- # NOTE: prompt token positions do not need sample, skip
- categorized_sample_indices_start_idx += subquery_len - 1
- categorized_sample_indices[
- sampling_params.sampling_type].append([
- categorized_sample_indices_start_idx,
- categorized_sampled_token_indices_start_idx
- ])
- categorized_sample_indices_start_idx += 1
- categorized_sampled_token_indices_start_idx += 1
- if sampling_params.prompt_logprobs is not None:
- selected_token_indices.extend(
- range(selected_token_start_idx,
- selected_token_start_idx + subquery_len - 1))
- selected_token_indices.append(selected_token_start_idx +
- subquery_len - 1)
- selected_token_start_idx += subquery_len
- if sampling_params.seed is not None:
- seq_group_metadata.state.generator = torch.Generator(
- device=self.device).manual_seed(sampling_params.seed)
- else:
- num_seqs = len(seq_ids)
- selected_token_indices.extend(
- range(selected_token_start_idx,
- selected_token_start_idx + num_seqs))
- selected_token_start_idx += num_seqs
- categorized_sample_indices[
- sampling_params.sampling_type].extend(
- zip(
- range(
- categorized_sample_indices_start_idx,
- categorized_sample_indices_start_idx +
- num_seqs),
- range(
- categorized_sampled_token_indices_start_idx,
- categorized_sampled_token_indices_start_idx +
- num_seqs)))
- categorized_sample_indices_start_idx += num_seqs
- categorized_sampled_token_indices_start_idx += num_seqs
- if sampling_params.seed is not None:
- generators.append(seq_group_metadata.state.generator)
- selected_token_indices = torch.tensor(selected_token_indices,
- dtype=torch.long)
- categorized_sample_indices = {
- t: maybe_expand_dim(torch.tensor(seq_ids, dtype=torch.int), 2, 2)
- for t, seq_ids in categorized_sample_indices.items()
- }
- seq_data: Dict[int, SequenceData] = {}
- for seq_group_metadata in seq_group_metadata_list:
- seq_data.update(seq_group_metadata.seq_data)
- sampling_metadata = SamplingMetadata(
- seq_groups=seq_groups,
- seq_data=seq_data,
- prompt_lens=prompt_lens,
- selected_token_indices=selected_token_indices,
- categorized_sample_indices=categorized_sample_indices,
- generators=generators,
- )
- return sampling_metadata
- def prepare_input_tensors(
- self,
- seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
- ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata,
- SamplingMetadata]:
- if self.is_driver_worker:
- # NOTE: We assume that all sequences in the group are all prompts or
- # all decodes.
- is_prompt = seq_group_metadata_list[0].is_prompt
- # Prepare input tensors.
- if is_prompt:
- (input_tokens, input_positions, attn_metadata,
- prompt_lens) = self._prepare_prompt(seq_group_metadata_list)
- else:
- (input_tokens, input_positions,
- attn_metadata) = self._prepare_decode(seq_group_metadata_list)
- prompt_lens = []
- sampling_metadata = self._prepare_sample(seq_group_metadata_list,
- prompt_lens)
- # Broadcast the metadata.
- metadata_dict = {
- "input_tokens": input_tokens,
- "input_positions": input_positions,
- "selected_token_indices":
- sampling_metadata.selected_token_indices,
- }
- metadata_dict.update(attn_metadata.asdict_zerocopy())
- broadcast_tensor_dict(metadata_dict, src=0)
- else:
- metadata_dict = broadcast_tensor_dict(src=0)
- input_tokens = metadata_dict.pop("input_tokens")
- input_positions = metadata_dict.pop("input_positions")
- selected_token_indices = metadata_dict.pop(
- "selected_token_indices")
- attn_metadata = self.attn_backend.make_metadata(**metadata_dict)
- sampling_metadata = SamplingMetadata(
- seq_groups=None,
- seq_data=None,
- prompt_lens=None,
- selected_token_indices=selected_token_indices,
- categorized_sample_indices=None,
- generators=None,
- perform_sampling=False,
- )
- return (
- input_tokens,
- input_positions,
- attn_metadata,
- sampling_metadata,
- )
- @torch.inference_mode()
- def execute_model(
- self,
- seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
- kv_caches: List[torch.Tensor],
- ) -> Optional[SamplerOutput]:
- (input_tokens, input_positions, attn_metadata, sampling_metadata
- ) = self.prepare_input_tensors(seq_group_metadata_list)
- model_executable = self.model
- execute_model_kwargs = {
- "input_ids": input_tokens,
- "positions": input_positions,
- "kv_caches": kv_caches,
- "attn_metadata": attn_metadata,
- }
- hidden_states = model_executable(**execute_model_kwargs)
- # Compute the logits.
- logits = self.model.compute_logits(hidden_states, sampling_metadata)
- # Only perform sampling in the driver worker.
- if not sampling_metadata.perform_sampling:
- return None
- # Sample the next token.
- output = self.model.sample(
- logits=logits,
- sampling_metadata=sampling_metadata,
- )
- return output
|