123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- from typing import Dict, List, Set
- from aphrodite.lora.request import LoRARequest
- from aphrodite.executor.executor_base import ExecutorBase
- from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata
- class NeuronExecutor(ExecutorBase):
- def _init_executor(self) -> None:
- assert (self.lora_config is
- None), "LoRA is not supported for Neuron backend."
- assert (not self.speculative_config
- ), "Speculative decoding not yet supported for Neuron backend."
- # Instantiate the worker and load the model to the device.
- self._init_worker()
- def _init_worker(self):
- from aphrodite.task_handler.neuron_worker import NeuronWorker
- self.driver_worker = NeuronWorker(
- self.model_config,
- self.parallel_config,
- self.scheduler_config,
- self.device_config,
- self.cache_config,
- )
- self.driver_worker.init_device()
- self.driver_worker.load_model()
- def determine_num_available_blocks(self) -> tuple[int, int]:
- """Determine the number of available KV blocks by invoking the
- underlying worker.
- """
- return self.driver_worker.determine_num_available_blocks()
- def initialize_cache(self, num_gpu_blocks: int,
- num_cpu_blocks: int) -> None:
- """Initialize the KV cache by invoking the underlying worker.
- """
- self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
- def execute_model(self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- blocks_to_swap_in: Dict[int, int],
- blocks_to_swap_out: Dict[int, int],
- blocks_to_copy: Dict[int, List[int]],
- num_lookahead_slots: int) -> List[SamplerOutput]:
- assert (blocks_to_swap_in == {} and blocks_to_swap_out == {}
- and blocks_to_copy == {}), (
- "Cache operations are not supported for Neuron backend.")
- assert num_lookahead_slots == 0, (
- "lookahead not supported for Neuron backend.")
- output = self.driver_worker.execute_model(
- seq_group_metadata_list=seq_group_metadata_list)
- return output
- def add_lora(self, lora_request: LoRARequest) -> bool:
- return self.driver_worker.add_lora(lora_request)
- def remove_lora(self, lora_id: int) -> bool:
- return self.driver_worker.remove_lora(lora_id)
- def list_loras(self) -> Set[int]:
- return self.driver_worker.list_loras()
- def check_health(self) -> None:
- # NeuronExecutor will always be healthy as long as
- # it's running.
- return
|