123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- /*
- * Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/reduce_kernel_utils.cuh
- * Copyright (c) 2023, The PygmalionAI team.
- * Copyright (c) 2023, The vLLM team.
- * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #pragma once
- #include "cuda_compat.h"
- namespace aphrodite {
- template<typename T>
- __inline__ __device__ T warpReduceSum(T val) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1)
- val += APHRODITE_SHFL_XOR_SYNC(val, mask);
- return val;
- }
- /* Calculate the sum of all elements in a block */
- template<typename T>
- __inline__ __device__ T blockReduceSum(T val) {
- static __shared__ T shared[32];
- int lane = threadIdx.x & 0x1f;
- int wid = threadIdx.x >> 5;
- val = warpReduceSum<T>(val);
- if (lane == 0)
- shared[wid] = val;
- __syncthreads();
- // Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
- // blockDim.x is not divided by 32
- val = (threadIdx.x < (blockDim.x / 32.f)) ? shared[lane] : (T)(0.0f);
- val = warpReduceSum<T>(val);
- return val;
- }
- } // namespace aphrodite
|