123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- """A GPU worker class."""
- import gc
- import os
- from typing import Dict, List, Tuple, Set, Optional
- import torch
- import torch.distributed
- from aphrodite.common.config import (CacheConfig, ModelConfig, ParallelConfig,
- SchedulerConfig, LoRAConfig, DeviceConfig)
- from aphrodite.common.utils import in_wsl
- from aphrodite.modeling import set_random_seed
- from aphrodite.modeling.megatron import cupy_utils
- from aphrodite.modeling.megatron.communication_op import (broadcast_tensor_dict
- )
- from aphrodite.modeling.megatron.custom_all_reduce import init_custom_ar
- from aphrodite.modeling.megatron.parallel_state import (
- ensure_model_parallel_initialized)
- from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata
- from aphrodite.task_handler.cache_engine import CacheEngine
- from aphrodite.task_handler.model_runner import ModelRunner
- from aphrodite.lora.request import LoRARequest
- from aphrodite.common.utils import is_hip
- class Worker:
- """A worker class that executes (a partition of) the model on a GPU.
- Each worker is associated with a single GPU. The worker is responsible for
- maintaining the KV cache and executing the model on the GPU. In case of
- distributed inference, each worker is assigned a partition of the model.
- """
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- local_rank: int,
- rank: int,
- distributed_init_method: str,
- lora_config: Optional[LoRAConfig] = None,
- kv_cache_dtype: Optional[str] = "auto",
- kv_quant_params_path: Optional[str] = None,
- is_driver_worker: bool = False,
- ) -> None:
- self.model_config = model_config
- self.parallel_config = parallel_config
- self.scheduler_config = scheduler_config
- self.device_config = device_config
- self.local_rank = local_rank
- self.rank = rank
- self.distributed_init_method = distributed_init_method
- self.lora_config = lora_config
- self.is_driver_worker = is_driver_worker
- if self.is_driver_worker:
- assert self.rank == 0, "The driver worker must have rank 0."
- self.model_runner = ModelRunner(
- model_config,
- parallel_config,
- scheduler_config,
- device_config,
- lora_config=self.lora_config,
- kv_cache_dtype=kv_cache_dtype,
- kv_quant_params_path=kv_quant_params_path,
- is_driver_worker=is_driver_worker)
- # Uninitialized cache engine. Will be initialized by
- # self.init_cache_engine().
- self.cache_config = None
- self.cache_engine = None
- self.cache_events = None
- self.gpu_cache = None
- def init_model(self, cupy_port: Optional[int] = None) -> None:
- if self.device_config.device.type == "cuda":
- # torch.distributed.all_reduce does not free the input tensor until
- # the synchronization point. This causes the memory usage to grow
- # as the number of all_reduce calls increases. This env var disables
- # this behavior.
- # Related issue:
- # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
- os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
- # This env var set by Ray causes exceptions with graph building.
- os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
- # Patch for torch.cuda.is_available() unexpected error in WSL; always call torch.cuda.device_count() before initialising device
- if in_wsl():
- torch.cuda.device_count()
- self.device = torch.device(f"cuda:{self.local_rank}")
- torch.cuda.set_device(self.device)
- _check_if_gpu_supports_dtype(self.model_config.dtype)
- torch.cuda.empty_cache()
- self.init_gpu_memory = torch.cuda.mem_get_info()[0]
- else:
- raise RuntimeError(
- f"Not support device type: {self.device_config.device}")
- # Initialize the distributed environment.
- init_distributed_environment(self.parallel_config, self.rank,
- cupy_port, self.distributed_init_method)
- if not self.parallel_config.disable_custom_all_reduce:
- init_custom_ar()
- # Initialize the model.
- set_random_seed(self.model_config.seed)
- def load_model(self):
- self.model_runner.load_model()
- @torch.inference_mode()
- def profile_num_available_blocks(
- self,
- block_size: int,
- gpu_memory_utilization: float,
- cpu_swap_space: int,
- cache_dtype: str,
- ) -> Tuple[int, int]:
- """Profiles the peak memory usage of the model and returns the maximum
- number of GPU and CPU cache blocks that can be allocated.
- Args:
- block_size: The size of the cache block.
- gpu_memory_utilization: The fraction of the total GPU memory to use.
- cpu_swap_space: The size of the CPU swap space in bytes.
- """
- # Profile the memory usage of the model and get the maximum number of
- # cache blocks that can be allocated with the remaining free memory.
- torch.cuda.empty_cache()
- # Execute a forward pass with dummy inputs to profile the memory usage
- # of the model.
- self.model_runner.profile_run()
- # Calculate the number of blocks that can be allocated with the
- # profiled peak memory.
- torch.cuda.synchronize()
- free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
- # NOTE: Here we assume that the other processes using the same
- # GPU did not change their memory usage during the profiling.
- peak_memory = self.init_gpu_memory - free_gpu_memory
- cache_block_size = CacheEngine.get_cache_block_size(
- block_size, cache_dtype, self.model_config, self.parallel_config)
- num_gpu_blocks = int(
- (total_gpu_memory * gpu_memory_utilization - peak_memory) //
- cache_block_size)
- num_cpu_blocks = int(cpu_swap_space // cache_block_size)
- num_gpu_blocks = max(num_gpu_blocks, 0)
- num_cpu_blocks = max(num_cpu_blocks, 0)
- if self.model_runner.lora_manager:
- self.model_runner.remove_all_loras()
- gc.collect()
- torch.cuda.empty_cache()
- return num_gpu_blocks, num_cpu_blocks
- def init_cache_engine(self, cache_config: CacheConfig) -> None:
- self.cache_config = cache_config
- self.cache_engine = CacheEngine(self.cache_config, self.model_config,
- self.parallel_config)
- self.cache_events = self.cache_engine.events
- self.gpu_cache = self.cache_engine.gpu_cache
- self.model_runner.set_block_size(self.cache_engine.block_size)
- def warm_up_model(self) -> None:
- if not self.model_config.enforce_eager:
- self.model_runner.capture_model(self.gpu_cache)
- # Reset the seed to ensure that the random state is not affected by
- # the model initialization and profiling.
- set_random_seed(self.model_config.seed)
- def cache_swap(
- self,
- blocks_to_swap_in: Dict[int, int],
- blocks_to_swap_out: Dict[int, int],
- blocks_to_copy: Dict[int, List[int]],
- ) -> None:
- # Issue cache operations.
- issued_cache_op = False
- if blocks_to_swap_in:
- self.cache_engine.swap_in(blocks_to_swap_in)
- issued_cache_op = True
- if blocks_to_swap_out:
- self.cache_engine.swap_out(blocks_to_swap_out)
- issued_cache_op = True
- if blocks_to_copy:
- self.cache_engine.copy(blocks_to_copy)
- issued_cache_op = True
- cache_events = self.cache_events if issued_cache_op else None
- # Wait for cache operations to finish.
- # TODO: Profile swapping overhead and optimize if needed.
- if cache_events is not None:
- for event in cache_events: # pylint: disable=not-an-iterable
- event.wait()
- @torch.inference_mode()
- def execute_model(
- self,
- seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None,
- blocks_to_swap_in: Optional[Dict[int, int]] = None,
- blocks_to_swap_out: Optional[Dict[int, int]] = None,
- blocks_to_copy: Optional[Dict[int, List[int]]] = None,
- ) -> Optional[SamplerOutput]:
- if self.is_driver_worker:
- assert seq_group_metadata_list is not None
- num_seq_groups = len(seq_group_metadata_list)
- assert blocks_to_swap_in is not None
- assert blocks_to_swap_out is not None
- assert blocks_to_copy is not None
- data = {
- "num_seq_groups": num_seq_groups,
- "blocks_to_swap_in": blocks_to_swap_in,
- "blocks_to_swap_out": blocks_to_swap_out,
- "blocks_to_copy": blocks_to_copy,
- }
- broadcast_tensor_dict(data, src=0)
- else:
- data = broadcast_tensor_dict(src=0)
- num_seq_groups = data["num_seq_groups"]
- blocks_to_swap_in = data["blocks_to_swap_in"]
- blocks_to_swap_out = data["blocks_to_swap_out"]
- blocks_to_copy = data["blocks_to_copy"]
- self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)
- # If there is no input, we don't need to execute the model.
- if num_seq_groups == 0:
- return {}
- output = self.model_runner.execute_model(seq_group_metadata_list,
- self.gpu_cache)
- return output
- def add_lora(self, lora_request: LoRARequest) -> bool:
- return self.model_runner.add_lora(lora_request)
- def remove_lora(self, lora_id: int) -> bool:
- return self.model_runner.remove_lora(lora_id)
- def list_loras(self) -> Set[int]:
- return self.model_runner.list_loras()
- def init_distributed_environment(
- parallel_config: ParallelConfig,
- rank: int,
- cupy_port: Optional[int],
- distributed_init_method: Optional[str] = None,
- ) -> None:
- """Initialize the distributed environment."""
- if torch.distributed.is_initialized():
- torch_world_size = torch.distributed.get_world_size()
- if torch_world_size != parallel_config.world_size:
- raise RuntimeError(
- "torch.distributed is already initialized but the torch world "
- "size does not match parallel_config.world_size "
- f"({torch_world_size} vs. {parallel_config.world_size}).")
- elif not distributed_init_method:
- raise ValueError(
- "distributed_init_method must be set if torch.distributed "
- "is not already initialized")
- else:
- torch.distributed.init_process_group(
- backend="nccl",
- world_size=parallel_config.world_size,
- rank=rank,
- init_method=distributed_init_method,
- )
- if cupy_utils.is_initialized():
- cupy_world_size = cupy_utils.get_world_size()
- if cupy_world_size != parallel_config.world_size:
- raise RuntimeError(
- "cupy.distributed is already initialized but the cupy world "
- "size does not match parallel_config.world_size "
- f"({cupy_world_size} vs. {parallel_config.world_size}).")
- elif (parallel_config.world_size > 1 and cupy_port is not None
- and not is_hip()):
- # NOTE: We don't initialize CuPy process group when world size
- # is 1.
- # TODO: Support multi-node connection.
- cupy_utils.init_process_group(
- world_size=parallel_config.world_size,
- rank=rank,
- host="localhost",
- port=cupy_port,
- )
- # A small all_reduce for warmup.
- torch.distributed.all_reduce(torch.zeros(1).cuda())
- if cupy_utils.is_initialized():
- cupy_utils.all_reduce(torch.zeros(1).cuda())
- ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
- parallel_config.pipeline_parallel_size)
- def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
- # Check if the GPU supports the dtype.
- if torch_dtype == torch.bfloat16:
- compute_capability = torch.cuda.get_device_capability()
- if compute_capability[0] < 8:
- gpu_name = torch.cuda.get_device_name()
- raise ValueError(
- "Bfloat16 is only supported on GPUs with compute capability "
- f"of at least 8.0. Your {gpu_name} GPU has compute capability "
- f"{compute_capability[0]}.{compute_capability[1]}. "
- "You can use float16 instead by explicitly setting the"
- "`dtype` flag in CLI, for example: --dtype=half.")
|