123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- """Utilities for selecting and loading models."""
- import contextlib
- import gc
- from contextlib import nullcontext
- from typing import Optional, Type
- from loguru import logger
- import torch
- import torch.nn as nn
- from aphrodite.common.config import DeviceConfig, ModelConfig, LoRAConfig
- from aphrodite.modeling.models import ModelRegistry
- from aphrodite.modeling.hf_downloader import (get_quant_config,
- initialize_dummy_weights)
- from aphrodite.modeling.layers.quantization.bitsandbytes import (
- BNBLinearMethod, replace_quant_params)
- @contextlib.contextmanager
- def _set_default_torch_dtype(dtype: torch.dtype):
- """Sets the default torch dtype to the given dtype."""
- old_dtype = torch.get_default_dtype()
- torch.set_default_dtype(dtype)
- yield
- torch.set_default_dtype(old_dtype)
- def _get_model_architecture(model_config: ModelConfig) -> Type[nn.Module]:
- architectures = getattr(model_config.hf_config, "architectures", [])
- # Special handling for quantized Mixtral.
- # FIXME: This is a temporary hack.
- if (model_config.quantization is not None
- and "MixtralForCausalLM" in architectures):
- architectures = ["QuantMixtralForCausalLM"]
- for arch in architectures:
- model_cls = ModelRegistry.load_model_cls(arch)
- if model_cls is not None:
- return model_cls
- raise ValueError(
- f"Model architectures {architectures} are not supported for now. "
- f"Supported architectures: {ModelRegistry.get_supported_archs()}")
- def get_model(model_config: ModelConfig,
- device_config: DeviceConfig,
- lora_config: Optional[LoRAConfig] = None) -> nn.Module:
- model_class = _get_model_architecture(model_config)
- # Get the (maybe quantized) linear method.
- linear_method = None
- if model_config.quantization is not None:
- quant_config = get_quant_config(model_config)
- capability = torch.cuda.get_device_capability()
- capability = capability[0] * 10 + capability[1]
- if capability < quant_config.get_min_capability():
- raise ValueError(
- f"The quantization method {model_config.quantization} is not "
- "supported for the current GPU. "
- f"Minimum capability: {quant_config.get_min_capability()}. "
- f"Current capability: {capability}.")
- supported_dtypes = quant_config.get_supported_act_dtypes()
- if model_config.dtype not in supported_dtypes:
- # set the dtype to float16 for quantized models
- model_config.dtype = torch.float16
- logger.warning("Model is quantized. Forcing float16 datatype.")
- linear_method = quant_config.get_linear_method()
- with _set_default_torch_dtype(model_config.dtype):
- # Create a model instance.
- # The weights will be initialized as empty tensors.
- with torch.device(device_config.device) if not \
- (isinstance(linear_method, BNBLinearMethod) and
- linear_method.quant_config.from_float) else nullcontext():
- if hasattr(model_class, "supported_lora_modules"):
- model = model_class(model_config.hf_config, linear_method,
- lora_config)
- elif lora_config:
- raise ValueError(
- f"Model {model_class.__name__} does not support LoRA, "
- "but LoRA is enabled. Support for this model may "
- "be added in the future. If this is important to you, "
- "please open an issue on github.")
- else:
- model = model_class(model_config.hf_config, linear_method)
- if model_config.load_format == "dummy":
- # NOTE: For accurate performance evaluation, we assign
- # random values to the weights.
- initialize_dummy_weights(model)
- else:
- # Load the weights from the cached or downloaded files.
- model.load_weights(model_config.model, model_config.download_dir,
- model_config.load_format, model_config.revision)
- if isinstance(linear_method, BNBLinearMethod):
- replace_quant_params(model,
- quant_config=linear_method.quant_config,
- modules_to_not_convert="lm_head")
- torch.cuda.synchronize()
- if linear_method.quant_config.from_float:
- model = model.cuda()
- gc.collect()
- torch.cuda.empty_cache()
- logger.info("Memory allocated for converted model: {} GiB".format(
- round(
- torch.cuda.memory_allocated(torch.cuda.current_device()) /
- (1024 * 1024 * 1024), 2)))
- logger.info("Memory reserved for converted model: {} GiB".format(
- round(
- torch.cuda.memory_reserved(torch.cuda.current_device()) /
- (1024 * 1024 * 1024), 2)))
- return model.eval()
|