PygmalionAI's large-scale inference engine
pygmalion.chat

It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving the Pygmalion models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

AlpinDale dcb794a340 fix: revert incorrect commit 3 mesi fa
.github 55261b09d6 ci: fix docs deployment (#750) 4 mesi fa
aphrodite dcb794a340 fix: revert incorrect commit 3 mesi fa
assets b3df2351c8 readme: update with bsz1 graph 10 mesi fa
cmake f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
docker f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
docs eee3cf5dab fix: make AMD usable (#775) 3 mesi fa
examples 8a71788372 Add OLMoE (#772) 3 mesi fa
kernels eee3cf5dab fix: make AMD usable (#775) 3 mesi fa
patches eee3cf5dab fix: make AMD usable (#775) 3 mesi fa
tests 8a71788372 Add OLMoE (#772) 3 mesi fa
.clang-format f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
.dockerignore f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
.gitignore f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
CMakeLists.txt eee3cf5dab fix: make AMD usable (#775) 3 mesi fa
CODE_OF_CONDUCT.md e7ea38f243 chore: add contribution guidelines + Code of Conduct (#507) 7 mesi fa
CONTRIBUTING.md e7ea38f243 chore: add contribution guidelines + Code of Conduct (#507) 7 mesi fa
Dockerfile 300f889554 chore: update flashinfer to v0.1.3 (#685) 4 mesi fa
Dockerfile.cpu d289c3855b fix: install protobuf for cpu (#716) 4 mesi fa
Dockerfile.neuron 31483a7d3b fix: manually install triton for other devices to prevent outlines errors (#697) 4 mesi fa
Dockerfile.openvino 31483a7d3b fix: manually install triton for other devices to prevent outlines errors (#697) 4 mesi fa
Dockerfile.ppc64le 31483a7d3b fix: manually install triton for other devices to prevent outlines errors (#697) 4 mesi fa
Dockerfile.rocm 4d781b22d3 docker: apply AMD patch in the dockerfile (#777) 3 mesi fa
Dockerfile.tpu 8cfbe62a7c chore: bump lmfe to v0.10.6 and include triton for tpu and xpu dockerfiles (#682) 4 mesi fa
Dockerfile.xpu 8cfbe62a7c chore: bump lmfe to v0.10.6 and include triton for tpu and xpu dockerfiles (#682) 4 mesi fa
LICENSE 5adcb33e14 Revert license back to AGPLv3 (#38) 1 anno fa
MANIFEST.in f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
README.md 5878e887f2 docs: update readme and docs (#757) 4 mesi fa
amdpatch.sh eee3cf5dab fix: make AMD usable (#775) 3 mesi fa
build_wheel.sh f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
config.yaml f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
env.py 5dd0145414 chore: update the env.py script and the bug report template (#662) 4 mesi fa
environment.yaml f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
formatting.sh f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
mypy.ini 9d81716bfd [v0.5.3] Release Candidate (#388) 8 mesi fa
pyproject.toml ec32f999bc build: bump cmake to 3.26 (#691) 4 mesi fa
requirements-adag.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
requirements-build.txt ec32f999bc build: bump cmake to 3.26 (#691) 4 mesi fa
requirements-common.txt 8a71788372 Add OLMoE (#772) 3 mesi fa
requirements-cpu.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
requirements-cuda.txt 4ca9aaaf3c build: add empty device (#684) 4 mesi fa
requirements-dev.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
requirements-lint.txt 62111fab17 feat: allow serving encoder-decoder models in the API server (#664) 4 mesi fa
requirements-neuron.txt 9d81716bfd [v0.5.3] Release Candidate (#388) 8 mesi fa
requirements-openvino.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
requirements-rocm.txt eee3cf5dab fix: make AMD usable (#775) 3 mesi fa
requirements-test.txt 04da8c33bd Revert "chore: use the `compressed-tensors` library to avoid code reuse (#704)" (#706) 4 mesi fa
requirements-tpu.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
requirements-xpu.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa
runtime.sh cbe37e8b18 fix: speed up cuda home detection (#288) 10 mesi fa
setup.py 4ca9aaaf3c build: add empty device (#684) 4 mesi fa
update-runtime.sh f1d0b77c92 [0.6.0] Release Candidate (#481) 4 mesi fa

README.md

Breathing Life into Language

aphrodite

Aphrodite is the official backend engine for PygmalionAI. It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving Hugging Face-compatible models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

Aphrodite builds upon and integrates the exceptional work from various projects.

The compute necessary for Aphrodite's development is provided by Arc Compute.

🔥 News

(09/2024) v0.6.1 is here. You can now load FP16 models in FP2 to FP7 quant formats, to achieve extremely high throughput and save on memory.

(09/2024) v0.6.0 is released, with huge throughput improvements, many new quant formats (including fp8 and llm-compressor), asymmetric tensor parallel, pipeline parallel and more! Please check out the exhaustive documentation for the User and Developer guides.

Features

  • Continuous Batching
  • Efficient K/V management with PagedAttention from vLLM
  • Optimized CUDA kernels for improved inference
  • Quantization support via AQLM, AWQ, Bitsandbytes, GGUF, GPTQ, QuIP#, Smoothquant+, SqueezeLLM, Marlin, FP2-FP12
  • Distributed inference
  • 8-bit KV Cache for higher context lengths and throughput, at both FP8 E5M3 and E4M3 formats.

Quickstart

Install the engine:

pip install -U aphrodite-engine

Then launch a model:

aphrodite run meta-llama/Meta-Llama-3.1-8B-Instruct

This will create a OpenAI-compatible API server that can be accessed at port 2242 of the localhost. You can plug in the API into a UI that supports OpenAI, such as SillyTavern.

Please refer to the documentation for the full list of arguments and flags you can pass to the engine.

You can play around with the engine in the demo here:

Open In Colab

Docker

Additionally, we provide a Docker image for easy deployment. Here's a basic command to get you started:

docker run --runtime nvidia --gpus all \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    #--env "CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7" \
    -p 2242:2242 \
    --ipc=host \
    alpindale/aphrodite-openai:latest \
    --model NousResearch/Meta-Llama-3.1-8B-Instruct \
    --tensor-parallel-size 8 \
    --api-keys "sk-empty"

This will pull the Aphrodite Engine image (~8GiB download), and launch the engine with the Llama-3.1-8B-Instruct model at port 2242.

Requirements

  • Operating System: Linux (or WSL for Windows)
  • Python: 3.8 to 3.12

For windows users, it's recommended to use tabbyAPI instead, if you do not need batching support.

Build Requirements:

  • CUDA >= 11

For supported devices, see here. Generally speaking, all semi-modern GPUs are supported - down to Pascal (GTX 10xx, P40, etc.) We also support AMD GPUs, Intel CPUs and GPUs, Google TPU, and AWS Inferentia.

Notes

  1. By design, Aphrodite takes up 90% of your GPU's VRAM. If you're not serving an LLM at scale, you may want to limit the amount of memory it takes up. You can do this in the API example by launching the server with the --gpu-memory-utilization 0.6 (0.6 means 60%).

  2. You can view the full list of commands by running aphrodite run --help.

Acknowledgements

Aphrodite Engine would have not been possible without the phenomenal work of other open-source projects. Credits go to:

Contributing

Everyone is welcome to contribute. You can support the project by opening Pull Requests for new features, fixes, or general UX improvements.