123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614 |
- # imports for guided decoding tests
- import json
- import os
- import re
- import subprocess
- import sys
- import time
- import jsonschema
- import openai # use the official client for correctness check
- import pytest
- import ray
- import requests
- from huggingface_hub import snapshot_download
- from aphrodite.transformers_utils.tokenizer import get_tokenizer
- MAX_SERVER_START_WAIT_S = 600 # wait for server to start for 60 seconds
- MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
- LORA_NAME = "typeof/zephyr-7b-beta-lora"
- TEST_SCHEMA = {
- "type": "object",
- "properties": {
- "name": {
- "type": "string"
- },
- "age": {
- "type": "integer"
- },
- "skills": {
- "type": "array",
- "items": {
- "type": "string",
- "maxLength": 10
- },
- "minItems": 3
- },
- "work history": {
- "type": "array",
- "items": {
- "type": "object",
- "properties": {
- "company": {
- "type": "string"
- },
- "duration": {
- "type": "string"
- },
- "position": {
- "type": "string"
- }
- },
- "required": ["company", "position"]
- }
- }
- },
- "required": ["name", "age", "skills", "work history"]
- }
- TEST_REGEX = r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}" + \
- r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)"
- TEST_CHOICE = [
- "Python", "Java", "JavaScript", "C++", "C#", "PHP", "TypeScript", "Ruby",
- "Swift", "Kotlin"
- ]
- pytestmark = pytest.mark.asyncio
- @ray.remote(num_gpus=1)
- class ServerRunner:
- def __init__(self, args):
- env = os.environ.copy()
- env["PYTHONUNBUFFERED"] = "1"
- self.proc = subprocess.Popen(
- ["python3", "-m", "aphrodite.endpoints.openai.api_server"] + args,
- env=env,
- stdout=sys.stdout,
- stderr=sys.stderr,
- )
- self._wait_for_server()
- def ready(self):
- return True
- def _wait_for_server(self):
- # run health check
- start = time.time()
- while True:
- try:
- if requests.get(
- "http://localhost:2242/health").status_code == 200:
- break
- except Exception as err:
- if self.proc.poll() is not None:
- raise RuntimeError("Server exited unexpectedly.") from err
- time.sleep(0.5)
- if time.time() - start > MAX_SERVER_START_WAIT_S:
- raise RuntimeError(
- "Server failed to start in time.") from err
- def __del__(self):
- if hasattr(self, "proc"):
- self.proc.terminate()
- @pytest.fixture(scope="session")
- def zephyr_lora_files():
- return snapshot_download(repo_id=LORA_NAME)
- @pytest.fixture(scope="session")
- def server(zephyr_lora_files):
- ray.init()
- server_runner = ServerRunner.remote([
- "--model",
- MODEL_NAME,
- "--dtype",
- "bfloat16", # use half precision for speed and memory savings in CI env
- "--max-model-len",
- "8192",
- "--enforce-eager",
- # lora config below
- "--enable-lora",
- "--lora-modules",
- f"zephyr-lora={zephyr_lora_files}",
- f"zephyr-lora2={zephyr_lora_files}",
- "--max-lora-rank",
- "64",
- "--max-cpu-loras",
- "2",
- "--max-num-seqs",
- "128"
- ])
- ray.get(server_runner.ready.remote())
- yield server_runner
- ray.shutdown()
- @pytest.fixture(scope="session")
- def client():
- client = openai.AsyncOpenAI(
- base_url="http://localhost:2242/v1",
- api_key="",
- )
- yield client
- async def test_check_models(server, client: openai.AsyncOpenAI):
- models = await client.models.list()
- models = models.data
- served_model = models[0]
- lora_models = models[1:]
- assert served_model.id == MODEL_NAME
- assert all(model.root == MODEL_NAME for model in models)
- assert lora_models[0].id == "zephyr-lora"
- assert lora_models[1].id == "zephyr-lora2"
- @pytest.mark.parametrize(
- # first test base model, then test loras
- "model_name",
- [MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
- )
- async def test_single_completion(server, client: openai.AsyncOpenAI,
- model_name: str):
- completion = await client.completions.create(model=model_name,
- prompt="Hello, my name is",
- max_tokens=5,
- temperature=0.0)
- assert completion.id is not None
- assert completion.choices is not None and len(completion.choices) == 1
- assert completion.choices[0].text is not None and len(
- completion.choices[0].text) >= 5
- assert completion.choices[0].finish_reason == "length"
- assert completion.usage == openai.types.CompletionUsage(
- completion_tokens=5, prompt_tokens=6, total_tokens=11)
- # test using token IDs
- completion = await client.completions.create(
- model=MODEL_NAME,
- prompt=[0, 0, 0, 0, 0],
- max_tokens=5,
- temperature=0.0,
- )
- assert completion.choices[0].text is not None and len(
- completion.choices[0].text) >= 5
- @pytest.mark.parametrize(
- # just test 1 lora hereafter
- "model_name",
- [MODEL_NAME, "zephyr-lora"],
- )
- async def test_single_chat_session(server, client: openai.AsyncOpenAI,
- model_name: str):
- messages = [{
- "role": "system",
- "content": "you are a helpful assistant"
- }, {
- "role": "user",
- "content": "what is 1+1?"
- }]
- # test single completion
- chat_completion = await client.chat.completions.create(model=model_name,
- messages=messages,
- max_tokens=10,
- logprobs=True,
- top_logprobs=10)
- assert chat_completion.id is not None
- assert chat_completion.choices is not None and len(
- chat_completion.choices) == 1
- assert chat_completion.choices[0].message is not None
- assert chat_completion.choices[0].logprobs is not None
- assert chat_completion.choices[0].logprobs.top_logprobs is not None
- assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 10
- message = chat_completion.choices[0].message
- assert message.content is not None and len(message.content) >= 10
- assert message.role == "assistant"
- messages.append({"role": "assistant", "content": message.content})
- # test multi-turn dialogue
- messages.append({"role": "user", "content": "express your result in json"})
- chat_completion = await client.chat.completions.create(
- model=MODEL_NAME,
- messages=messages,
- max_tokens=10,
- )
- message = chat_completion.choices[0].message
- assert message.content is not None and len(message.content) >= 0
- @pytest.mark.parametrize(
- # just test 1 lora hereafter
- "model_name",
- [MODEL_NAME, "zephyr-lora"],
- )
- async def test_completion_streaming(server, client: openai.AsyncOpenAI,
- model_name: str):
- prompt = "What is an LLM?"
- single_completion = await client.completions.create(
- model=model_name,
- prompt=prompt,
- max_tokens=5,
- temperature=0.0,
- )
- single_output = single_completion.choices[0].text
- single_usage = single_completion.usage
- stream = await client.completions.create(model=model_name,
- prompt=prompt,
- max_tokens=5,
- temperature=0.0,
- stream=True)
- chunks = []
- async for chunk in stream:
- chunks.append(chunk.choices[0].text)
- assert chunk.choices[0].finish_reason == "length"
- assert chunk.usage == single_usage
- assert "".join(chunks) == single_output
- @pytest.mark.parametrize(
- # just test 1 lora hereafter
- "model_name",
- [MODEL_NAME, "zephyr-lora"],
- )
- async def test_chat_streaming(server, client: openai.AsyncOpenAI,
- model_name: str):
- messages = [{
- "role": "system",
- "content": "you are a helpful assistant"
- }, {
- "role": "user",
- "content": "what is 1+1?"
- }]
- # test single completion
- chat_completion = await client.chat.completions.create(
- model=model_name,
- messages=messages,
- max_tokens=10,
- temperature=0.0,
- )
- output = chat_completion.choices[0].message.content
- stop_reason = chat_completion.choices[0].finish_reason
- # test streaming
- stream = await client.chat.completions.create(
- model=model_name,
- messages=messages,
- max_tokens=10,
- temperature=0.0,
- stream=True,
- )
- chunks = []
- async for chunk in stream:
- delta = chunk.choices[0].delta
- if delta.role:
- assert delta.role == "assistant"
- if delta.content:
- chunks.append(delta.content)
- assert chunk.choices[0].finish_reason == stop_reason
- assert "".join(chunks) == output
- @pytest.mark.parametrize(
- # just test 1 lora hereafter
- "model_name",
- [MODEL_NAME, "zephyr-lora"],
- )
- async def test_batch_completions(server, client: openai.AsyncOpenAI,
- model_name: str):
- # test simple list
- batch = await client.completions.create(
- model=model_name,
- prompt=["Hello, my name is", "Hello, my name is"],
- max_tokens=5,
- temperature=0.0,
- )
- assert len(batch.choices) == 2
- assert batch.choices[0].text == batch.choices[1].text
- # test n = 2
- batch = await client.completions.create(
- model=model_name,
- prompt=["Hello, my name is", "Hello, my name is"],
- n=2,
- max_tokens=5,
- temperature=0.0,
- extra_body=dict(
- # NOTE: this has to be true for n > 1 in Aphrodite, but not
- # necessary for official client.
- use_beam_search=True),
- )
- assert len(batch.choices) == 4
- assert batch.choices[0].text != batch.choices[
- 1].text, "beam search should be different"
- assert batch.choices[0].text == batch.choices[
- 2].text, "two copies of the same prompt should be the same"
- assert batch.choices[1].text == batch.choices[
- 3].text, "two copies of the same prompt should be the same"
- # test streaming
- batch = await client.completions.create(
- model=model_name,
- prompt=["Hello, my name is", "Hello, my name is"],
- max_tokens=5,
- temperature=0.0,
- stream=True,
- )
- texts = [""] * 2
- async for chunk in batch:
- assert len(chunk.choices) == 1
- choice = chunk.choices[0]
- texts[choice.index] += choice.text
- assert texts[0] == texts[1]
- async def test_logits_bias(server, client: openai.AsyncOpenAI):
- prompt = "Hello, my name is"
- max_tokens = 5
- tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
- # Test exclusive selection
- token_id = 1000
- completion = await client.completions.create(
- model=MODEL_NAME,
- prompt=prompt,
- max_tokens=max_tokens,
- temperature=0.0,
- logit_bias={str(token_id): 100},
- seed=42,
- )
- assert completion.choices[0].text is not None and len(
- completion.choices[0].text) >= 5
- response_tokens = tokenizer(completion.choices[0].text,
- add_special_tokens=False)["input_ids"]
- expected_tokens = tokenizer(tokenizer.decode([token_id] * 5),
- add_special_tokens=False)["input_ids"]
- assert all([
- response == expected
- for response, expected in zip(response_tokens, expected_tokens)
- ])
- # Test ban
- completion = await client.completions.create(
- model=MODEL_NAME,
- prompt=prompt,
- max_tokens=max_tokens,
- temperature=0.0,
- )
- response_tokens = tokenizer(completion.choices[0].text,
- add_special_tokens=False)["input_ids"]
- first_response = completion.choices[0].text
- completion = await client.completions.create(
- model=MODEL_NAME,
- prompt=prompt,
- max_tokens=max_tokens,
- temperature=0.0,
- logit_bias={str(token): -100
- for token in response_tokens},
- )
- assert first_response != completion.choices[0].text
- async def test_guided_json_completion(server, client: openai.AsyncOpenAI):
- completion = await client.completions.create(
- model=MODEL_NAME,
- prompt=
- "Give an example JSON for an employee profile that fits this schema:"
- f" {TEST_SCHEMA}",
- n=3,
- temperature=1.0,
- max_tokens=500,
- extra_body=dict(guided_json=TEST_SCHEMA))
- assert completion.id is not None
- assert completion.choices is not None and len(completion.choices) == 3
- for i in range(3):
- assert completion.choices[i].text is not None
- output_json = json.loads(completion.choices[i].text)
- jsonschema.validate(instance=output_json, schema=TEST_SCHEMA)
- async def test_guided_json_chat(server, client: openai.AsyncOpenAI):
- messages = [{
- "role": "system",
- "content": "you are a helpful assistant"
- }, {
- "role": "user",
- "content": "Give an example JSON for an employee profile that " + \
- f"fits this schema: {TEST_SCHEMA}"
- }]
- chat_completion = await client.chat.completions.create(
- model=MODEL_NAME,
- messages=messages,
- max_tokens=500,
- extra_body=dict(guided_json=TEST_SCHEMA))
- message = chat_completion.choices[0].message
- assert message.content is not None
- json1 = json.loads(message.content)
- jsonschema.validate(instance=json1, schema=TEST_SCHEMA)
- messages.append({"role": "assistant", "content": message.content})
- messages.append({
- "role":
- "user",
- "content":
- "Give me another one with a different name and age"
- })
- chat_completion = await client.chat.completions.create(
- model=MODEL_NAME,
- messages=messages,
- max_tokens=500,
- extra_body=dict(guided_json=TEST_SCHEMA))
- message = chat_completion.choices[0].message
- assert message.content is not None
- json2 = json.loads(message.content)
- jsonschema.validate(instance=json2, schema=TEST_SCHEMA)
- assert json1["name"] != json2["name"]
- assert json1["age"] != json2["age"]
- async def test_guided_regex_completion(server, client: openai.AsyncOpenAI):
- completion = await client.completions.create(
- model=MODEL_NAME,
- prompt=f"Give an example IPv4 address with this regex: {TEST_REGEX}",
- n=3,
- temperature=1.0,
- max_tokens=20,
- extra_body=dict(guided_regex=TEST_REGEX))
- assert completion.id is not None
- assert completion.choices is not None and len(completion.choices) == 3
- for i in range(3):
- assert completion.choices[i].text is not None
- assert re.fullmatch(TEST_REGEX, completion.choices[i].text) is not None
- async def test_guided_regex_chat(server, client: openai.AsyncOpenAI):
- messages = [{
- "role": "system",
- "content": "you are a helpful assistant"
- }, {
- "role":
- "user",
- "content":
- f"Give an example IP address with this regex: {TEST_REGEX}"
- }]
- chat_completion = await client.chat.completions.create(
- model=MODEL_NAME,
- messages=messages,
- max_tokens=20,
- extra_body=dict(guided_regex=TEST_REGEX))
- ip1 = chat_completion.choices[0].message.content
- assert ip1 is not None
- assert re.fullmatch(TEST_REGEX, ip1) is not None
- messages.append({"role": "assistant", "content": ip1})
- messages.append({"role": "user", "content": "Give me a different one"})
- chat_completion = await client.chat.completions.create(
- model=MODEL_NAME,
- messages=messages,
- max_tokens=20,
- extra_body=dict(guided_regex=TEST_REGEX))
- ip2 = chat_completion.choices[0].message.content
- assert ip2 is not None
- assert re.fullmatch(TEST_REGEX, ip2) is not None
- assert ip1 != ip2
- async def test_guided_choice_completion(server, client: openai.AsyncOpenAI):
- completion = await client.completions.create(
- model=MODEL_NAME,
- prompt="The best language for type-safe systems programming is ",
- n=2,
- temperature=1.0,
- max_tokens=10,
- extra_body=dict(guided_choice=TEST_CHOICE))
- assert completion.id is not None
- assert completion.choices is not None and len(completion.choices) == 2
- for i in range(2):
- assert completion.choices[i].text in TEST_CHOICE
- async def test_guided_choice_chat(server, client: openai.AsyncOpenAI):
- messages = [{
- "role": "system",
- "content": "you are a helpful assistant"
- }, {
- "role":
- "user",
- "content":
- "The best language for type-safe systems programming is "
- }]
- chat_completion = await client.chat.completions.create(
- model=MODEL_NAME,
- messages=messages,
- max_tokens=10,
- extra_body=dict(guided_choice=TEST_CHOICE))
- choice1 = chat_completion.choices[0].message.content
- assert choice1 in TEST_CHOICE
- messages.append({"role": "assistant", "content": choice1})
- messages.append({
- "role": "user",
- "content": "I disagree, pick another one"
- })
- chat_completion = await client.chat.completions.create(
- model=MODEL_NAME,
- messages=messages,
- max_tokens=10,
- extra_body=dict(guided_choice=TEST_CHOICE))
- choice2 = chat_completion.choices[0].message.content
- assert choice2 in TEST_CHOICE
- assert choice1 != choice2
- async def test_guided_decoding_type_error(server, client: openai.AsyncOpenAI):
- with pytest.raises(openai.BadRequestError):
- _ = await client.completions.create(
- model=MODEL_NAME,
- prompt="Give an example JSON that fits this schema: 42",
- extra_body=dict(guided_json=42))
- messages = [{
- "role": "system",
- "content": "you are a helpful assistant"
- }, {
- "role":
- "user",
- "content":
- "The best language for type-safe systems programming is "
- }]
- with pytest.raises(openai.BadRequestError):
- _ = await client.chat.completions.create(model=MODEL_NAME,
- messages=messages,
- extra_body=dict(guided_regex={
- 1: "Python",
- 2: "C++"
- }))
- with pytest.raises(openai.BadRequestError):
- _ = await client.completions.create(
- model=MODEL_NAME,
- prompt="Give an example string that fits this regex",
- extra_body=dict(guided_regex=TEST_REGEX, guided_json=TEST_SCHEMA))
- async def test_embeddings(server, client: openai.AsyncOpenAI):
- # model is ignored by the endpoint, but needed by the openai client.
- model = "all-mpnet-base-v2"
- text = "I'm the text to extract meaning from"
- embedding_promise = await client.embeddings.create(input=[text],
- model=model)
- response_data = embedding_promise.data[0]
- embedding = response_data.embedding
- assert isinstance(response_data, openai.types.Embedding)
- assert isinstance(embedding, list)
- assert (len(embedding) > 1)
- if __name__ == "__main__":
- pytest.main([__file__])
|