123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- import random
- import pytest
- import torch
- from aphrodite._C import cache_ops
- DTYPES = [torch.half, torch.bfloat16, torch.float]
- NUM_TOKENS = [83] # Arbitrary values for testing
- NUM_LAYERS = [1] # Arbitrary values for testing
- NUM_HEADS = [8] # Arbitrary values for testing
- HEAD_SIZES = [64, 80, 96, 112, 128, 256]
- BLOCK_SIZES = [8, 16, 32]
- NUM_BLOCKS = [1024, 36000] # Arbitrary values for testing
- NUM_MAPPINGS = [256] # Arbitrary values for testing
- SEEDS = [0]
- DEVICES = [i for i in range(1 if torch.cuda.device_count() == 1 else 2)]
- @pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
- @pytest.mark.parametrize("num_layers", NUM_LAYERS)
- @pytest.mark.parametrize("num_heads", NUM_HEADS)
- @pytest.mark.parametrize("head_size", HEAD_SIZES)
- @pytest.mark.parametrize("block_size", BLOCK_SIZES)
- @pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
- @pytest.mark.parametrize("dtype", DTYPES)
- @pytest.mark.parametrize("seed", SEEDS)
- @pytest.mark.parametrize("device", DEVICES)
- @torch.inference_mode()
- def test_copy_blocks(
- kv_cache_factory,
- num_mappings: int,
- num_layers: int,
- num_heads: int,
- head_size: int,
- block_size: int,
- num_blocks: int,
- dtype: torch.dtype,
- seed: int,
- device: int,
- ) -> None:
- random.seed(seed)
- torch.random.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- gpu_id = f"cuda:{device}"
- # Generate random block mappings where each source block is mapped to two
- # destination blocks.
- assert 2 * num_mappings <= num_blocks
- src_blocks = random.sample(range(num_blocks), num_mappings)
- remainig_blocks = list(set(range(num_blocks)) - set(src_blocks))
- dst_blocks = random.sample(remainig_blocks, 2 * num_mappings)
- copy_src = []
- copy_dst = []
- for i in range(num_mappings):
- copy_src.append(src_blocks[i])
- copy_dst.append(dst_blocks[2 * i])
- copy_src.append(src_blocks[i])
- copy_dst.append(dst_blocks[2 * i + 1])
- # Create the KV caches.
- key_caches, value_caches = kv_cache_factory(num_blocks, block_size,
- num_layers, num_heads,
- head_size, dtype, seed, gpu_id)
- # Clone the KV caches.
- cloned_key_caches = [key_cache.clone() for key_cache in key_caches]
- cloned_value_caches = [value_cache.clone() for value_cache in value_caches]
- # Call the copy blocks kernel.
- cache_ops.copy_blocks(key_caches, value_caches, copy_src, copy_dst)
- # Run the reference implementation.
- for src, dst in zip(copy_src, copy_dst):
- for cloned_key_cache in cloned_key_caches:
- cloned_key_cache[dst].copy_(cloned_key_cache[src])
- for cloned_value_cache in cloned_value_caches:
- cloned_value_cache[dst].copy_(cloned_value_cache[src])
- # Compare the results.
- for key_cache, cloned_key_cache in zip(key_caches, cloned_key_caches):
- assert torch.allclose(key_cache, cloned_key_cache)
- for value_cache, cloned_value_cache in zip(value_caches,
- cloned_value_caches):
- assert torch.allclose(value_cache, cloned_value_cache)
- @pytest.mark.parametrize("num_tokens", NUM_TOKENS)
- @pytest.mark.parametrize("num_heads", NUM_HEADS)
- @pytest.mark.parametrize("head_size", HEAD_SIZES)
- @pytest.mark.parametrize("block_size", BLOCK_SIZES)
- @pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
- @pytest.mark.parametrize("dtype", DTYPES)
- @pytest.mark.parametrize("seed", SEEDS)
- @pytest.mark.parametrize("device", DEVICES)
- @torch.inference_mode()
- def test_reshape_and_cache(
- kv_cache_factory,
- num_tokens: int,
- num_heads: int,
- head_size: int,
- block_size: int,
- num_blocks: int,
- dtype: torch.dtype,
- seed: int,
- device: int,
- ) -> None:
- random.seed(seed)
- torch.random.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- gpu_id = f"cuda:{device}"
- # Create a random slot mapping.
- num_slots = block_size * num_blocks
- slot_mapping = random.sample(range(num_slots), num_tokens)
- slot_mapping = torch.tensor(slot_mapping, dtype=torch.long, device=gpu_id)
- qkv = torch.randn(num_tokens,
- 3,
- num_heads,
- head_size,
- dtype=dtype,
- device=gpu_id)
- _, key, value = qkv.unbind(dim=1)
- # Create the KV caches.
- key_caches, value_caches = kv_cache_factory(num_blocks, block_size, 1,
- num_heads, head_size, dtype,
- seed, gpu_id)
- key_cache, value_cache = key_caches[0], value_caches[0]
- # Clone the KV caches.
- cloned_key_cache = key_cache.clone()
- cloned_value_cache = value_cache.clone()
- # Call the reshape_and_cache kernel.
- cache_ops.reshape_and_cache(key, value, key_cache, value_cache,
- slot_mapping)
- # Run the reference implementation.
- reshaped_key = key.reshape(num_tokens, *key_cache[0, :, :, 0, :].shape)
- block_indicies = torch.div(slot_mapping, block_size, rounding_mode="floor")
- block_indicies = block_indicies.cpu().tolist()
- block_offsets = slot_mapping % block_size
- block_offsets = block_offsets.cpu().tolist()
- for i in range(num_tokens):
- block_idx = block_indicies[i]
- block_offset = block_offsets[i]
- cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
- cloned_value_cache[block_idx, :, :, block_offset] = value[i]
- assert torch.allclose(key_cache, cloned_key_cache)
- assert torch.allclose(value_cache, cloned_value_cache)
|