123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- /******************************************************************************
- * Copyright (c) 2023, Tri Dao.
- ******************************************************************************/
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include <torch/extension.h>
- #include <vector>
- #include "selective_scan.h"
- #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
- #define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
- if (ITYPE == at::ScalarType::Half) { \
- using input_t = at::Half; \
- __VA_ARGS__(); \
- } else if (ITYPE == at::ScalarType::BFloat16) { \
- using input_t = at::BFloat16; \
- __VA_ARGS__(); \
- } else if (ITYPE == at::ScalarType::Float) { \
- using input_t = float; \
- __VA_ARGS__(); \
- } else { \
- AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
- }
- #define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
- if (WTYPE == at::ScalarType::Half) { \
- using weight_t = at::Half; \
- __VA_ARGS__(); \
- } else if (WTYPE == at::ScalarType::BFloat16) { \
- using weight_t = at::BFloat16; \
- __VA_ARGS__(); \
- } else if (WTYPE == at::ScalarType::Float) { \
- using weight_t = float; \
- __VA_ARGS__(); \
- } else { \
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
- }
- #define DISPATCH_WTYPE_FLOAT_AND_COMPLEX(WTYPE, NAME, ...) \
- if (WTYPE == at::ScalarType::Float) { \
- using weight_t = float; \
- __VA_ARGS__(); \
- } else if (WTYPE == at::ScalarType::ComplexFloat) { \
- using weight_t = c10::complex<float>; \
- __VA_ARGS__(); \
- } else { \
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
- }
- template<typename input_t, typename weight_t>
- void selective_scan_fwd_cuda(SSMParamsBase ¶ms, cudaStream_t stream);
- void set_ssm_params_fwd(SSMParamsBase ¶ms,
- // sizes
- const size_t batch,
- const size_t dim,
- const size_t seqlen,
- const size_t dstate,
- const size_t n_groups,
- const size_t n_chunks,
- const bool is_variable_B,
- const bool is_variable_C,
- // device pointers
- const at::Tensor u,
- const at::Tensor delta,
- const at::Tensor A,
- const at::Tensor B,
- const at::Tensor C,
- const at::Tensor out,
- const at::Tensor z,
- const at::Tensor out_z,
- void* D_ptr,
- void* delta_bias_ptr,
- void* x_ptr,
- bool has_z,
- bool delta_softplus) {
- // Reset the parameters
- memset(¶ms, 0, sizeof(params));
- params.batch = batch;
- params.dim = dim;
- params.seqlen = seqlen;
- params.dstate = dstate;
- params.n_groups = n_groups;
- params.n_chunks = n_chunks;
- params.dim_ngroups_ratio = dim / n_groups;
- params.delta_softplus = delta_softplus;
- params.is_variable_B = is_variable_B;
- params.is_variable_C = is_variable_C;
- // Set the pointers and strides.
- params.u_ptr = u.data_ptr();
- params.delta_ptr = delta.data_ptr();
- params.A_ptr = A.data_ptr();
- params.B_ptr = B.data_ptr();
- params.C_ptr = C.data_ptr();
- params.D_ptr = D_ptr;
- params.delta_bias_ptr = delta_bias_ptr;
- params.out_ptr = out.data_ptr();
- params.x_ptr = x_ptr;
- params.z_ptr = has_z ? z.data_ptr() : nullptr;
- params.out_z_ptr = has_z ? out_z.data_ptr() : nullptr;
- // All stride are in elements, not bytes.
- params.A_d_stride = A.stride(0);
- params.A_dstate_stride = A.stride(1);
- if (!is_variable_B) {
- params.B_d_stride = B.stride(0);
- } else {
- params.B_batch_stride = B.stride(0);
- params.B_group_stride = B.stride(1);
- }
- params.B_dstate_stride = !is_variable_B ? B.stride(1) : B.stride(2);
- if (!is_variable_C) {
- params.C_d_stride = C.stride(0);
- } else {
- params.C_batch_stride = C.stride(0);
- params.C_group_stride = C.stride(1);
- }
- params.C_dstate_stride = !is_variable_C ? C.stride(1) : C.stride(2);
- params.u_batch_stride = u.stride(0);
- params.u_d_stride = u.stride(1);
- params.delta_batch_stride = delta.stride(0);
- params.delta_d_stride = delta.stride(1);
- if (has_z) {
- params.z_batch_stride = z.stride(0);
- params.z_d_stride = z.stride(1);
- params.out_z_batch_stride = out_z.stride(0);
- params.out_z_d_stride = out_z.stride(1);
- }
- params.out_batch_stride = out.stride(0);
- params.out_d_stride = out.stride(1);
- }
- std::vector<at::Tensor>
- selective_scan_fwd(const at::Tensor &u, const at::Tensor &delta,
- const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
- const c10::optional<at::Tensor> &D_,
- const c10::optional<at::Tensor> &z_,
- const c10::optional<at::Tensor> &delta_bias_,
- bool delta_softplus) {
- auto input_type = u.scalar_type();
- auto weight_type = A.scalar_type();
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);
- const bool is_variable_B = B.dim() >= 3;
- const bool is_variable_C = C.dim() >= 3;
- const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
- TORCH_CHECK(delta.scalar_type() == input_type);
- TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
- TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
- TORCH_CHECK(u.is_cuda());
- TORCH_CHECK(delta.is_cuda());
- TORCH_CHECK(A.is_cuda());
- TORCH_CHECK(B.is_cuda());
- TORCH_CHECK(C.is_cuda());
- TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1);
- TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1);
- const auto sizes = u.sizes();
- const int batch_size = sizes[0];
- const int dim = sizes[1];
- const int seqlen = sizes[2];
- const int dstate = A.size(1);
- const int n_groups = is_variable_B ? B.size(1) : 1;
- TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
- CHECK_SHAPE(u, batch_size, dim, seqlen);
- CHECK_SHAPE(delta, batch_size, dim, seqlen);
- CHECK_SHAPE(A, dim, dstate);
- if (!is_variable_B) {
- CHECK_SHAPE(B, dim, dstate);
- } else {
- CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
- TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1);
- }
- if (!is_variable_C) {
- CHECK_SHAPE(C, dim, dstate);
- } else {
- CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
- TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1);
- }
- if (D_.has_value()) {
- auto D = D_.value();
- TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
- TORCH_CHECK(D.is_cuda());
- TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1);
- CHECK_SHAPE(D, dim);
- }
- if (delta_bias_.has_value()) {
- auto delta_bias = delta_bias_.value();
- TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
- TORCH_CHECK(delta_bias.is_cuda());
- TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1);
- CHECK_SHAPE(delta_bias, dim);
- }
- at::Tensor z, out_z;
- const bool has_z = z_.has_value();
- if (has_z) {
- z = z_.value();
- TORCH_CHECK(z.scalar_type() == input_type);
- TORCH_CHECK(z.is_cuda());
- TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
- CHECK_SHAPE(z, batch_size, dim, seqlen);
- out_z = torch::empty_like(z);
- }
- const int n_chunks = (seqlen + 2048 - 1) / 2048;
- // const int n_chunks = (seqlen + 1024 - 1) / 1024;
- // at::Tensor out = torch::empty_like(u);
- // Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
- at::Tensor out = torch::empty_like(delta);
- at::Tensor x;
- x = torch::empty({batch_size, dim, n_chunks, dstate * 2}, u.options().dtype(weight_type));
- SSMParamsBase params;
- set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
- u, delta, A, B, C, out, z, out_z,
- D_.has_value() ? D_.value().data_ptr() : nullptr,
- delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
- x.data_ptr(),
- has_z,
- delta_softplus);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)u.get_device()};
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
- DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_fwd", [&] {
- selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
- });
- });
- std::vector<at::Tensor> result = {out, x};
- if (has_z) { result.push_back(out_z); }
- return result;
- }
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
- m.def("fwd", &selective_scan_fwd, "Selective scan forward");
- }
|