123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- """A GPU worker class."""
- import gc
- import os
- from typing import Dict, List, Optional, Set, Tuple
- import torch
- import torch.distributed
- from loguru import logger
- from aphrodite.common.config import (
- CacheConfig,
- DeviceConfig,
- LoRAConfig,
- ModelConfig,
- ParallelConfig,
- SchedulerConfig,
- VisionLanguageConfig,
- )
- from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata
- from aphrodite.common.utils import in_wsl
- from aphrodite.distributed import (
- broadcast_tensor_dict,
- ensure_model_parallel_initialized,
- init_distributed_environment,
- )
- from aphrodite.distributed.device_communicators import pynccl_utils
- from aphrodite.distributed.device_communicators.custom_all_reduce import (
- init_custom_ar, )
- from aphrodite.lora.request import LoRARequest
- from aphrodite.modeling import set_random_seed
- from aphrodite.task_handler.cache_engine import CacheEngine
- from aphrodite.task_handler.model_runner import ModelRunner
- from aphrodite.task_handler.worker_base import WorkerBase
- class Worker(WorkerBase):
- """A worker class that executes (a partition of) the model on a GPU.
- Each worker is associated with a single GPU. The worker is responsible for
- maintaining the KV cache and executing the model on the GPU. In case of
- distributed inference, each worker is assigned a partition of the model.
- """
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- cache_config: CacheConfig,
- local_rank: int,
- rank: int,
- distributed_init_method: str,
- lora_config: Optional[LoRAConfig] = None,
- vision_language_config: Optional[VisionLanguageConfig] = None,
- is_driver_worker: bool = False,
- ) -> None:
- self.model_config = model_config
- self.parallel_config = parallel_config
- self.scheduler_config = scheduler_config
- self.device_config = device_config
- self.cache_config = cache_config
- self.local_rank = local_rank
- self.rank = rank
- self.distributed_init_method = distributed_init_method
- self.lora_config = lora_config
- self.is_driver_worker = is_driver_worker
- if self.is_driver_worker:
- assert self.rank == 0, "The driver worker must have rank 0."
- self.vision_language_config = vision_language_config
- if self.vision_language_config:
- assert not self.lora_config, (
- "To be tested: vision language model with LoRA settings.")
- self.model_runner = ModelRunner(
- model_config,
- parallel_config,
- scheduler_config,
- device_config,
- lora_config=self.lora_config,
- kv_cache_dtype=self.cache_config.cache_dtype,
- is_driver_worker=is_driver_worker,
- # kv_quant_params_path=kv_quant_params_path,
- vision_language_config=vision_language_config)
- # Uninitialized cache engine. Will be initialized by
- # initialize_cache
- self.cache_engine = None
- self.gpu_cache = None
- def init_device(self) -> None:
- if self.device_config.device.type == "cuda":
- # torch.distributed.all_reduce does not free the input tensor until
- # the synchronization point. This causes the memory usage to grow
- # as the number of all_reduce calls increases. This env var disables
- # this behavior.
- # Related issue:
- # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
- os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
- # This env var set by Ray causes exceptions with graph building.
- os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
- # Patch for torch.cuda.is_available() unexpected error in WSL;
- # always call torch.cuda.device_count() before initialising device
- if in_wsl():
- torch.cuda.device_count()
- self.device = torch.device(f"cuda:{self.local_rank}")
- torch.cuda.set_device(self.device)
- _check_if_gpu_supports_dtype(self.model_config.dtype)
- torch.cuda.empty_cache()
- self.init_gpu_memory = torch.cuda.mem_get_info()[0]
- else:
- raise RuntimeError(
- f"Not support device type: {self.device_config.device}")
- # Initialize the distributed environment.
- init_worker_distributed_environment(self.parallel_config, self.rank,
- self.distributed_init_method,
- self.local_rank)
- # Set random seed
- set_random_seed(self.model_config.seed)
- def load_model(self):
- self.model_runner.load_model()
- @torch.inference_mode()
- def determine_num_available_blocks(self) -> Tuple[int, int]:
- """Profiles the peak memory usage of the model to determine how many
- KV blocks may be allocated without OOMs.
- The engine will first conduct a profiling of the existing memory usage.
- Then, it calculate the maximum possible number of GPU and CPU blocks
- that can be allocated with the remaining free memory.
- .. tip::
- You may limit the usage of GPU memory
- by adjusting the `gpu_memory_utilization` parameter.
- """
- # Profile the memory usage of the model and get the maximum number of
- # cache blocks that can be allocated with the remaining free memory.
- torch.cuda.empty_cache()
- # Execute a forward pass with dummy inputs to profile the memory usage
- # of the model.
- self.model_runner.profile_run()
- # Calculate the number of blocks that can be allocated with the
- # profiled peak memory.
- torch.cuda.synchronize()
- free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
- # NOTE: Here we assume that the other processes using the same
- # GPU did not change their memory usage during the profiling.
- peak_memory = self.init_gpu_memory - free_gpu_memory
- assert peak_memory > 0, (
- "Error in memory profiling. This happens when the GPU memory was "
- "not properly cleaned up before initializing Aphrodite.")
- cache_block_size = self.get_cache_block_size_bytes()
- num_gpu_blocks = int(
- (total_gpu_memory * self.cache_config.gpu_memory_utilization -
- peak_memory) // cache_block_size)
- num_cpu_blocks = int(self.cache_config.swap_space_bytes //
- cache_block_size)
- num_gpu_blocks = max(num_gpu_blocks, 0)
- num_cpu_blocks = max(num_cpu_blocks, 0)
- if self.model_runner.lora_manager:
- self.model_runner.remove_all_loras()
- gc.collect()
- torch.cuda.empty_cache()
- return num_gpu_blocks, num_cpu_blocks
- def initialize_cache(self, num_gpu_blocks: int,
- num_cpu_blocks: int) -> None:
- """Allocate GPU and CPU KV cache with the specified number of blocks.
- This also warms up the model, which may record CUDA graphs.
- """
- raise_if_cache_size_invalid(num_gpu_blocks,
- self.cache_config.block_size,
- self.model_config.max_model_len)
- self.cache_config.num_gpu_blocks = num_gpu_blocks
- self.cache_config.num_cpu_blocks = num_cpu_blocks
- self._init_cache_engine()
- self._warm_up_model()
- def _init_cache_engine(self):
- assert self.cache_config.num_gpu_blocks is not None
- self.cache_engine = CacheEngine(self.cache_config, self.model_config,
- self.parallel_config)
- self.gpu_cache = self.cache_engine.gpu_cache
- self.model_runner.set_block_size(self.cache_engine.block_size)
- is_mamba = self.model_config.hf_config.model_type == "jamba"
- if is_mamba:
- self.model_runner.prepare_contiguous_mamba_cache(
- self.cache_engine.dtype)
- def _warm_up_model(self) -> None:
- if not self.model_config.enforce_eager:
- self.model_runner.capture_model(self.gpu_cache)
- # Reset the seed to ensure that the random state is not affected by
- # the model initialization and profiling.
- set_random_seed(self.model_config.seed)
- def cache_swap(
- self,
- blocks_to_swap_in: Dict[int, int],
- blocks_to_swap_out: Dict[int, int],
- blocks_to_copy: Dict[int, List[int]],
- ) -> None:
- # Issue cache operations.
- # TODO: Profile the overhead of swapping operations and optimize
- if blocks_to_swap_in:
- self.cache_engine.swap_in(blocks_to_swap_in)
- if blocks_to_swap_out:
- self.cache_engine.swap_out(blocks_to_swap_out)
- if blocks_to_copy:
- self.cache_engine.copy(blocks_to_copy)
- @torch.inference_mode()
- def execute_model(
- self,
- seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None,
- blocks_to_swap_in: Optional[Dict[int, int]] = None,
- blocks_to_swap_out: Optional[Dict[int, int]] = None,
- blocks_to_copy: Optional[Dict[int, List[int]]] = None,
- ) -> Optional[SamplerOutput]:
- if self.is_driver_worker:
- assert seq_group_metadata_list is not None
- num_seq_groups = len(seq_group_metadata_list)
- assert blocks_to_swap_in is not None
- assert blocks_to_swap_out is not None
- assert blocks_to_copy is not None
- data = {
- "num_seq_groups": num_seq_groups,
- "blocks_to_swap_in": blocks_to_swap_in,
- "blocks_to_swap_out": blocks_to_swap_out,
- "blocks_to_copy": blocks_to_copy,
- }
- broadcast_tensor_dict(data, src=0)
- else:
- data = broadcast_tensor_dict(src=0)
- num_seq_groups = data["num_seq_groups"]
- blocks_to_swap_in = data["blocks_to_swap_in"]
- blocks_to_swap_out = data["blocks_to_swap_out"]
- blocks_to_copy = data["blocks_to_copy"]
- self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)
- # If there is no input, we don't need to execute the model.
- if num_seq_groups == 0:
- return {}
- output = self.model_runner.execute_model(seq_group_metadata_list,
- self.gpu_cache)
- return output
- def add_lora(self, lora_request: LoRARequest) -> bool:
- return self.model_runner.add_lora(lora_request)
- def remove_lora(self, lora_id: int) -> bool:
- return self.model_runner.remove_lora(lora_id)
- def list_loras(self) -> Set[int]:
- return self.model_runner.list_loras()
- @property
- def max_model_len(self) -> int:
- return self.model_config.max_model_len
- @property
- def vocab_size(self) -> int:
- return self.model_runner.vocab_size
- def get_cache_block_size_bytes(self) -> int:
- """Get the size of the KV cache block size in bytes.
- """
- return CacheEngine.get_cache_block_size(self.cache_config,
- self.model_config,
- self.parallel_config)
- def release_mamba_cache(self, requests_id: List[str]):
- self.model_runner.release_mamba_cache(requests_id)
- def init_worker_distributed_environment(
- parallel_config: ParallelConfig,
- rank: int,
- distributed_init_method: Optional[str] = None,
- local_rank: int = -1,
- ) -> None:
- """Initialize the distributed environment."""
- init_distributed_environment(parallel_config.world_size, rank,
- distributed_init_method, local_rank)
- if pynccl_utils.is_initialized():
- pynccl_world_size = pynccl_utils.get_world_size()
- if pynccl_world_size != parallel_config.world_size:
- raise RuntimeError(
- "pynccl is already initialized but the pynccl world "
- "size does not match parallel_config.world_size "
- f"({pynccl_world_size} vs. {parallel_config.world_size}).")
- elif parallel_config.world_size > 1:
- # NOTE: We don't initialize pynccl process group when world size
- # is 1.
- pynccl_utils.init_process_group(
- world_size=parallel_config.world_size,
- local_rank=local_rank,
- rank=rank,
- init_method=distributed_init_method,
- )
- ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
- parallel_config.pipeline_parallel_size)
- # Initialize a custom fast all-reduce implementation.
- if not parallel_config.disable_custom_all_reduce:
- init_custom_ar()
- # A small all_reduce for warmup.
- torch.distributed.all_reduce(torch.zeros(1).cuda())
- if pynccl_utils.is_initialized():
- pynccl_utils.all_reduce(torch.zeros(1).cuda())
- def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
- # Check if the GPU supports the dtype.
- if torch_dtype == torch.bfloat16:
- compute_capability = torch.cuda.get_device_capability()
- if compute_capability[0] < 8:
- gpu_name = torch.cuda.get_device_name()
- raise ValueError(
- "Bfloat16 is only supported on GPUs with compute capability "
- f"of at least 8.0. Your {gpu_name} GPU has compute capability "
- f"{compute_capability[0]}.{compute_capability[1]}. "
- "You can use float16 instead by explicitly setting the"
- "`dtype` flag in CLI, for example: --dtype=half.")
- def raise_if_cache_size_invalid(num_gpu_blocks, block_size,
- max_model_len) -> None:
- if num_gpu_blocks <= 0:
- raise ValueError("No available memory for the cache blocks. "
- "Try increasing `gpu_memory_utilization` when "
- "initializing the engine.")
- max_seq_len = block_size * num_gpu_blocks
- logger.info(f"Maximum sequence length allowed in the cache: "
- f"{max_seq_len}")
- if max_model_len > max_seq_len:
- raise ValueError(
- f"The model's max seq len ({max_model_len}) "
- "is larger than the maximum number of tokens that can be "
- f"stored in KV cache ({max_seq_len}). Try increasing "
- "`gpu_memory_utilization` or decreasing `max_model_len` when "
- "initializing the engine.")
|