mpt.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. # coding=utf-8
  2. # Adapted from https://huggingface.co/mosaicml/mpt-7b/tree/main
  3. import math
  4. from typing import List, Optional, Tuple
  5. import torch
  6. import torch.nn as nn
  7. from aphrodite.modeling.metadata import InputMetadata
  8. from aphrodite.modeling.layers.activation import get_act_fn
  9. from aphrodite.modeling.layers.attention import PagedAttention
  10. from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
  11. LinearMethodBase,
  12. QKVParallelLinear,
  13. RowParallelLinear)
  14. from aphrodite.modeling.layers.sampler import Sampler, QuantSampler
  15. from aphrodite.modeling.layers.vocab_parallel_embedding import (
  16. VocabParallelEmbedding, ParallelLMHead)
  17. from aphrodite.modeling.megatron.parallel_state import (
  18. get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
  19. from aphrodite.modeling.sampling_metadata import SamplingMetadata
  20. from aphrodite.modeling.hf_downloader import (default_weight_loader,
  21. hf_model_weights_iterator)
  22. from aphrodite.common.sequence import SamplerOutput
  23. from aphrodite.transformers_utils.configs.mpt import MPTConfig
  24. KVCache = Tuple[torch.Tensor, torch.Tensor]
  25. def _get_alibi_slopes(
  26. total_num_heads: int,
  27. alibi_bias_max: int,
  28. ) -> torch.Tensor:
  29. next_power_of_2 = 2**math.ceil(math.log2(total_num_heads))
  30. m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
  31. m = m.mul(alibi_bias_max / next_power_of_2)
  32. slopes = 1.0 / torch.pow(2, m)
  33. if next_power_of_2 != total_num_heads:
  34. slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
  35. return slopes
  36. class MPTAttention(nn.Module):
  37. def __init__(
  38. self,
  39. config: MPTConfig,
  40. linear_method: Optional[LinearMethodBase] = None,
  41. ):
  42. super().__init__()
  43. self.d_model = config.d_model
  44. self.total_num_heads = config.n_heads
  45. self.head_dim = self.d_model // self.total_num_heads
  46. self.clip_qkv = config.attn_config["clip_qkv"]
  47. self.qk_ln = config.attn_config["qk_ln"]
  48. self.alibi_bias_max = config.attn_config["alibi_bias_max"]
  49. if "kv_n_heads" in config.attn_config:
  50. self.total_num_kv_heads = config.attn_config['kv_n_heads']
  51. else:
  52. self.total_num_kv_heads = self.total_num_heads
  53. assert not config.attn_config["prefix_lm"]
  54. assert config.attn_config["alibi"]
  55. # pylint: disable=invalid-name
  56. self.Wqkv = QKVParallelLinear(
  57. self.d_model,
  58. self.d_model // self.total_num_heads,
  59. self.total_num_heads,
  60. self.total_num_kv_heads,
  61. bias=not config.no_bias,
  62. linear_method=linear_method,
  63. )
  64. if self.qk_ln:
  65. self.q_ln = nn.LayerNorm(self.d_model)
  66. self.k_ln = nn.LayerNorm(self.d_model)
  67. self.out_proj = RowParallelLinear(
  68. self.d_model,
  69. self.d_model,
  70. bias=not config.no_bias,
  71. linear_method=linear_method,
  72. )
  73. tp_world_size = get_tensor_model_parallel_world_size()
  74. assert self.total_num_heads % tp_world_size == 0
  75. self.num_heads = self.total_num_heads // tp_world_size
  76. if self.total_num_kv_heads >= tp_world_size:
  77. # Number of KV heads is greater than TP size, so we partition
  78. # the KV heads across multiple tensor parallel GPUs.
  79. assert self.total_num_kv_heads % tp_world_size == 0
  80. else:
  81. # Number of KV heads is less than TP size, so we replicate
  82. # the KV heads across multiple tensor parallel GPUs.
  83. assert tp_world_size % self.total_num_kv_heads == 0
  84. self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
  85. self.q_size = self.num_heads * self.head_dim
  86. self.kv_size = self.num_kv_heads * self.head_dim
  87. # Create the alibi slopes and slice them.
  88. tp_rank = get_tensor_model_parallel_rank()
  89. head_start = tp_rank * self.num_heads
  90. head_end = (tp_rank + 1) * self.num_heads
  91. alibi_slopes = _get_alibi_slopes(self.total_num_heads,
  92. self.alibi_bias_max)
  93. alibi_slopes = alibi_slopes[head_start:head_end].tolist()
  94. self.head_dim = self.d_model // self.total_num_heads
  95. scaling = self.head_dim**-0.5
  96. self.attn = PagedAttention(self.num_heads,
  97. self.head_dim,
  98. scaling,
  99. alibi_slopes=alibi_slopes,
  100. num_kv_heads=self.num_kv_heads)
  101. def forward(
  102. self,
  103. position_ids: torch.Tensor,
  104. hidden_states: torch.Tensor,
  105. kv_cache: KVCache,
  106. input_metadata: InputMetadata,
  107. ) -> torch.Tensor:
  108. del position_ids # unused.
  109. qkv, _ = self.Wqkv(hidden_states)
  110. if self.clip_qkv is not None:
  111. qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
  112. q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
  113. if self.qk_ln:
  114. q = self.q_ln(q)
  115. k = self.k_ln(k)
  116. k_cache, v_cache = kv_cache
  117. attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
  118. output, _ = self.out_proj(attn_output)
  119. return output
  120. class MPTMLP(nn.Module):
  121. def __init__(
  122. self,
  123. config: MPTConfig,
  124. linear_method: Optional[LinearMethodBase] = None,
  125. ):
  126. super().__init__()
  127. hidden_size = config.d_model
  128. expansion_ratio = config.expansion_ratio
  129. intermediate_size = expansion_ratio * hidden_size
  130. self.up_proj = ColumnParallelLinear(
  131. hidden_size,
  132. intermediate_size,
  133. bias=not config.no_bias,
  134. linear_method=linear_method,
  135. )
  136. quant_config = getattr(linear_method, "quant_config", None)
  137. self.act = get_act_fn("gelu", quant_config, intermediate_size)
  138. self.down_proj = RowParallelLinear(
  139. intermediate_size,
  140. hidden_size,
  141. bias=not config.no_bias,
  142. linear_method=linear_method,
  143. )
  144. def forward(self, x: torch.Tensor) -> torch.Tensor:
  145. x, _ = self.up_proj(x)
  146. x = self.act(x)
  147. x, _ = self.down_proj(x)
  148. return x
  149. class MPTBlock(nn.Module):
  150. def __init__(
  151. self,
  152. config: MPTConfig,
  153. linear_method: Optional[LinearMethodBase] = None,
  154. ):
  155. super().__init__()
  156. hidden_size = config.d_model
  157. self.norm_1 = nn.LayerNorm(hidden_size)
  158. self.attn = MPTAttention(config, linear_method)
  159. self.norm_2 = nn.LayerNorm(hidden_size)
  160. self.ffn = MPTMLP(config, linear_method)
  161. def forward(
  162. self,
  163. position_ids: torch.Tensor,
  164. hidden_states: torch.Tensor,
  165. kv_cache: KVCache,
  166. input_metadata: InputMetadata,
  167. ) -> torch.Tensor:
  168. x = self.norm_1(hidden_states)
  169. x = self.attn(
  170. position_ids=position_ids,
  171. hidden_states=x,
  172. kv_cache=kv_cache,
  173. input_metadata=input_metadata,
  174. )
  175. hidden_states = hidden_states + x
  176. x = self.norm_2(hidden_states)
  177. x = self.ffn(x)
  178. hidden_states = hidden_states + x
  179. return hidden_states
  180. class MPTModel(nn.Module):
  181. def __init__(
  182. self,
  183. config: MPTConfig,
  184. linear_method: Optional[LinearMethodBase] = None,
  185. ):
  186. super().__init__()
  187. assert config.embedding_fraction == 1.0
  188. assert config.norm_type == "low_precision_layernorm"
  189. self.wte = VocabParallelEmbedding(config.vocab_size,
  190. config.d_model,
  191. linear_method=linear_method)
  192. self.blocks = nn.ModuleList(
  193. [MPTBlock(config, linear_method) for _ in range(config.n_layers)])
  194. self.norm_f = nn.LayerNorm(config.d_model)
  195. if config.no_bias:
  196. for module in self.modules():
  197. if hasattr(module, "bias") and isinstance(
  198. module.bias, nn.Parameter):
  199. # Remove the bias term in Linear and LayerNorm.
  200. module.register_parameter("bias", None)
  201. def forward(
  202. self,
  203. input_ids: torch.Tensor,
  204. position_ids: torch.Tensor,
  205. kv_caches: List[KVCache],
  206. input_metadata: InputMetadata,
  207. ) -> torch.Tensor:
  208. hidden_states = self.wte(input_ids)
  209. for i in range(len(self.blocks)):
  210. block = self.blocks[i]
  211. hidden_states = block(
  212. position_ids,
  213. hidden_states,
  214. kv_caches[i],
  215. input_metadata,
  216. )
  217. hidden_states = self.norm_f(hidden_states)
  218. return hidden_states
  219. class MPTForCausalLM(nn.Module):
  220. def __init__(
  221. self,
  222. config: MPTConfig,
  223. linear_method: Optional[LinearMethodBase] = None,
  224. ):
  225. super().__init__()
  226. self.config = config
  227. assert config.tie_word_embeddings
  228. self.linear_method = linear_method
  229. self.transformer = MPTModel(config, linear_method)
  230. # self.lm_head_weight = self.transformer.wte.weight
  231. self.lm_head = ParallelLMHead(config.vocab_size,
  232. config.hidden_size,
  233. linear_method=linear_method)
  234. self.sampler = Sampler(config.vocab_size)
  235. self.quant_sampler = QuantSampler(config.vocab_size)
  236. def forward(
  237. self,
  238. input_ids: torch.Tensor,
  239. positions: torch.Tensor,
  240. kv_caches: List[KVCache],
  241. input_metadata: InputMetadata,
  242. ) -> torch.Tensor:
  243. hidden_states = self.transformer(input_ids, positions, kv_caches,
  244. input_metadata)
  245. return hidden_states
  246. def sample(
  247. self,
  248. hidden_states: torch.Tensor,
  249. sampling_metadata: SamplingMetadata,
  250. ) -> Optional[SamplerOutput]:
  251. if (self.linear_method is not None
  252. and not self.linear_method.quant_config.merge_weight()):
  253. next_tokens = self.quant_sampler(self.lm_head(hidden_states),
  254. sampling_metadata)
  255. else:
  256. next_tokens = self.sampler(self.lm_head.weight, hidden_states,
  257. sampling_metadata)
  258. return next_tokens
  259. def load_weights(self,
  260. model_name_or_path: str,
  261. cache_dir: Optional[str] = None,
  262. load_format: str = "auto",
  263. revision: Optional[str] = None):
  264. params_dict = dict(self.named_parameters(remove_duplicate=False))
  265. for name, loaded_weight in hf_model_weights_iterator(
  266. model_name_or_path, cache_dir, load_format, revision,
  267. self.config):
  268. # Skip loading extra bias for GPTQ models.
  269. if name.endswith(".bias") and name not in params_dict:
  270. continue
  271. if "wte" in name:
  272. # Copy word embedding to lm_head
  273. head_name = name.replace("transformer.wte", "lm_head")
  274. if head_name in params_dict:
  275. lm_head_param = params_dict[head_name]
  276. weight_loader = getattr(lm_head_param, "weight_loader",
  277. default_weight_loader)
  278. weight_loader(lm_head_param, loaded_weight)
  279. param = params_dict[name]
  280. weight_loader = getattr(param, "weight_loader",
  281. default_weight_loader)
  282. weight_loader(param, loaded_weight)