123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995 |
- # Derived from BART implementation posted on HuggingFace; license below:
- #
- # coding=utf-8
- # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team.
- # All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch BART model."""
- import math
- from typing import Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from transformers import BartConfig
- from aphrodite.attention import Attention, AttentionMetadata, AttentionType
- from aphrodite.common.config import CacheConfig, LoRAConfig
- from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
- from aphrodite.distributed import get_tensor_model_parallel_world_size
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- def get_bsz_seq_len(input_ids):
- shp = input_ids.shape
- ndim = len(shp)
- if ndim == 1:
- return 1, input_ids.numel()
- else:
- return shp[:2]
- class BartLearnedPositionalEmbedding(VocabParallelEmbedding):
- """
- This module learns positional embeddings up to a fixed maximum size.
- """
- def __init__(self, num_embeddings: int, embedding_dim: int):
- # Bart is set up so that if padding_idx is
- # specified then offset the embedding ids by 2
- # and adjust num_embeddings appropriately.
- # Other models don't have this hack
- self.offset = 2
- super().__init__(num_embeddings + self.offset, embedding_dim)
- def forward(
- self,
- positions: torch.Tensor,
- attn_type: AttentionType,
- ) -> torch.Tensor:
- """`input_ids' shape is expected to be [bsz x seqlen]."""
- assert attn_type != AttentionType.ENCODER_DECODER
- return super().forward(positions + self.offset)
- class BartScaledWordEmbedding(VocabParallelEmbedding):
- """
- This module overrides VocabParallelEmbedding's
- forward by multiplying with embeddings scale.
- """
- def __init__(self,
- num_embeddings: int,
- embedding_dim: int,
- embed_scale: float = 1.0):
- super().__init__(num_embeddings, embedding_dim)
- self.embed_scale = embed_scale
- def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
- return super().forward(input_ids) * self.embed_scale
- class BartParallelLMHead(ParallelLMHead):
- """
- This module overrides ParallelLMHead's
- forward by dividing by embeddings scale,
- yielding effectively the inverse of
- BartScaledWordEmbedding
- """
- def __init__(self,
- num_embeddings: int,
- embedding_dim: int,
- embed_scale: float = 1.0):
- super().__init__(num_embeddings, embedding_dim)
- self.embed_scale = embed_scale
- def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
- return super().forward(input_ids) / self.embed_scale
- class BartEncoderAttention(nn.Module):
- def __init__(
- self,
- embed_dim: int,
- num_heads: int,
- bias: bool = True,
- config: Optional[BartConfig] = None,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.d_model = config.d_model
- self.embed_dim = embed_dim
- self.total_num_heads = num_heads
- self.total_num_kv_heads = self.total_num_heads
- self.head_dim = embed_dim // num_heads
- self.config = config
- if (self.head_dim * num_heads) != self.embed_dim:
- raise ValueError(f"embed_dim must be divisible by num_heads "
- f"(got `embed_dim`: {self.embed_dim}"
- f" and `num_heads`: {num_heads}).")
- self.scaling = self.head_dim**-0.5
- self.qkv_proj = QKVParallelLinear(
- self.d_model,
- self.d_model // self.total_num_heads,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=bias,
- quant_config=quant_config,
- )
- self.out_proj = RowParallelLinear(
- embed_dim,
- embed_dim,
- bias=bias,
- quant_config=quant_config,
- )
- tp_world_size = get_tensor_model_parallel_world_size()
- assert self.total_num_heads % tp_world_size == 0
- self.num_heads = self.total_num_heads // tp_world_size
- if self.total_num_kv_heads >= tp_world_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_world_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_world_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(self, hidden_states: torch.Tensor, kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata) -> torch.Tensor:
- """Input shape: Batch x Time x Channel"""
- qkv, _ = self.qkv_proj(hidden_states)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- attn_output = self.attn(q,
- k,
- v,
- kv_cache,
- attn_metadata,
- attn_type=AttentionType.ENCODER)
- output, _ = self.out_proj(attn_output)
- return output
- class BartDecoderSelfAttention(nn.Module):
- def __init__(
- self,
- embed_dim: int,
- num_heads: int,
- bias: bool = True,
- config: Optional[BartConfig] = None,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.d_model = config.d_model
- self.embed_dim = embed_dim
- self.total_num_heads = num_heads
- self.total_num_kv_heads = self.total_num_heads
- self.head_dim = embed_dim // num_heads
- self.config = config
- if (self.head_dim * num_heads) != self.embed_dim:
- raise ValueError(f"embed_dim must be divisible by num_heads "
- f"(got `embed_dim`: {self.embed_dim}"
- f" and `num_heads`: {num_heads}).")
- self.scaling = self.head_dim**-0.5
- self.qkv_proj = QKVParallelLinear(
- self.d_model,
- self.d_model // self.total_num_heads,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=bias,
- quant_config=quant_config,
- )
- self.out_proj = RowParallelLinear(
- embed_dim,
- embed_dim,
- bias=bias,
- quant_config=quant_config,
- )
- tp_world_size = get_tensor_model_parallel_world_size()
- assert self.total_num_heads % tp_world_size == 0
- self.num_heads = self.total_num_heads // tp_world_size
- if self.total_num_kv_heads >= tp_world_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_world_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_world_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(self, hidden_states: torch.Tensor, kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata) -> torch.Tensor:
- """Input shape: Batch x Time x Channel"""
- qkv, _ = self.qkv_proj(hidden_states)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- attn_output = self.attn(q,
- k,
- v,
- kv_cache,
- attn_metadata,
- attn_type=AttentionType.DECODER)
- output, _ = self.out_proj(attn_output)
- return output
- class BartCrossAttention(nn.Module):
- def __init__(
- self,
- embed_dim: int,
- num_heads: int,
- bias: bool = True,
- config: Optional[BartConfig] = None,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.d_model = config.d_model
- self.embed_dim = embed_dim
- self.total_num_heads = num_heads
- self.total_num_kv_heads = self.total_num_heads
- self.head_dim = embed_dim // num_heads
- self.config = config
- if (self.head_dim * num_heads) != self.embed_dim:
- raise ValueError(f"embed_dim must be divisible by num_heads "
- f"(got `embed_dim`: {self.embed_dim}"
- f" and `num_heads`: {num_heads}).")
- self.scaling = self.head_dim**-0.5
- self.qkv_proj = QKVParallelLinear(
- self.d_model,
- self.d_model // self.total_num_heads,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=bias,
- quant_config=quant_config,
- )
- self.out_proj = RowParallelLinear(
- embed_dim,
- embed_dim,
- bias=bias,
- quant_config=quant_config,
- )
- tp_world_size = get_tensor_model_parallel_world_size()
- assert self.total_num_heads % tp_world_size == 0
- self.num_heads = self.total_num_heads // tp_world_size
- if self.total_num_kv_heads >= tp_world_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_world_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_world_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(
- self,
- decoder_hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- """Input shape: Batch x Time x Channel"""
- # (afeldman-nm 2024/07/22) TODO:
- # Need a more efficient solution for q/k/v
- qkv_dec, _ = self.qkv_proj(decoder_hidden_states)
- q, _, _ = qkv_dec.split([self.q_size, self.kv_size, self.kv_size],
- dim=-1)
- if encoder_hidden_states is None:
- k = None
- v = None
- else:
- qkv_enc, _ = self.qkv_proj(encoder_hidden_states)
- _, k, v = qkv_enc.split([self.q_size, self.kv_size, self.kv_size],
- dim=-1)
- attn_output = self.attn(q,
- k,
- v,
- kv_cache,
- attn_metadata,
- attn_type=AttentionType.ENCODER_DECODER)
- output, _ = self.out_proj(attn_output)
- return output
- class BartEncoderLayer(nn.Module):
- def __init__(
- self,
- config: BartConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.embed_dim = config.d_model
- self.self_attn = BartEncoderAttention(
- embed_dim=self.embed_dim,
- num_heads=config.encoder_attention_heads,
- config=config,
- cache_config=cache_config,
- quant_config=quant_config)
- self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- self.activation_fn = get_act_fn(config.activation_function,
- quant_config)
- ffn_hidden_size = self.embed_dim
- ffn_intermediate_size = config.encoder_ffn_dim
- ffn_has_bias = True
- self.fc1 = ColumnParallelLinear(
- ffn_hidden_size,
- ffn_intermediate_size,
- bias=ffn_has_bias,
- quant_config=quant_config,
- )
- self.act = get_act_fn("gelu", quant_config, ffn_intermediate_size)
- self.fc2 = RowParallelLinear(
- ffn_intermediate_size,
- ffn_hidden_size,
- bias=ffn_has_bias,
- quant_config=quant_config,
- )
- self.final_layer_norm = nn.LayerNorm(self.embed_dim)
- def forward(self, hidden_states: torch.Tensor, kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata) -> torch.Tensor:
- r"""
- Args:
- hidden_states
- torch.Tensor of *encoder* input embeddings.
- kv_cache:
- Layer-wise list of KV cache tensors
- attn_metadata:
- Aphrodite Attention metadata structure
- Returns:
- Encoder layer output torch.Tensor
- """
- residual = hidden_states
- hidden_states = self.self_attn(hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata)
- hidden_states = residual + hidden_states
- hidden_states = self.self_attn_layer_norm(hidden_states)
- residual = hidden_states
- fc1_out, _ = self.fc1(hidden_states)
- hidden_states = self.activation_fn(fc1_out)
- hidden_states, _ = self.fc2(hidden_states)
- hidden_states = residual + hidden_states
- hidden_states = self.final_layer_norm(hidden_states)
- if hidden_states.dtype == torch.float16 and (
- torch.isinf(hidden_states).any()
- or torch.isnan(hidden_states).any()):
- clamp_value = torch.finfo(hidden_states.dtype).max - 1000
- hidden_states = torch.clamp(hidden_states,
- min=-clamp_value,
- max=clamp_value)
- return hidden_states
- class BartDecoderLayer(nn.Module):
- def __init__(
- self,
- config: BartConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.embed_dim = config.d_model
- self.self_attn = BartDecoderSelfAttention(
- embed_dim=self.embed_dim,
- num_heads=config.decoder_attention_heads,
- config=config,
- cache_config=cache_config,
- quant_config=quant_config)
- self.activation_fn = get_act_fn(config.activation_function,
- quant_config)
- self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- '''
- afeldman-nm: personally I would call this "cross-attention",
- however I left the name as "encoder_attn" to maintain consistency
- with the name of the pretrained weights.
- '''
- self.encoder_attn = BartCrossAttention(
- self.embed_dim,
- config.decoder_attention_heads,
- config=config,
- )
- self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- ffn_hidden_size = self.embed_dim
- ffn_intermediate_size = config.encoder_ffn_dim
- ffn_has_bias = True
- self.fc1 = ColumnParallelLinear(
- ffn_hidden_size,
- ffn_intermediate_size,
- bias=ffn_has_bias,
- quant_config=quant_config,
- )
- self.fc2 = RowParallelLinear(
- ffn_intermediate_size,
- ffn_hidden_size,
- bias=ffn_has_bias,
- quant_config=quant_config,
- )
- self.final_layer_norm = nn.LayerNorm(self.embed_dim)
- def forward(
- self,
- decoder_hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- r"""
- Args:
- decoder_hidden_states
- torch.Tensor of *decoder* input embeddings.
- kv_cache:
- KV cache tensor
- attn_metadata:
- Aphrodite Attention metadata structure
- encoder_hidden_states
- torch.Tensor of *encoder* input embeddings.
- Returns:
- Decoder layer output torch.Tensor
- """
- residual = decoder_hidden_states
- # Self Attention
- hidden_states = self.self_attn(hidden_states=decoder_hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata)
- hidden_states = residual + hidden_states
- hidden_states = self.self_attn_layer_norm(hidden_states)
- # Cross-Attention Block
- residual = hidden_states
- hidden_states = self.encoder_attn(
- decoder_hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- encoder_hidden_states=encoder_hidden_states,
- )
- hidden_states = residual + hidden_states
- hidden_states = self.encoder_attn_layer_norm(hidden_states)
- # Fully Connected
- residual = hidden_states
- fc1_out, _ = self.fc1(hidden_states)
- hidden_states = self.activation_fn(fc1_out)
- hidden_states, _ = self.fc2(hidden_states)
- hidden_states = residual + hidden_states
- hidden_states = self.final_layer_norm(hidden_states)
- return hidden_states
- class BartEncoder(nn.Module):
- """
- Transformer encoder consisting of *config.encoder_layers*
- self attention layers. Each layer is a [`BartEncoderLayer`].
- Args:
- config: BartConfig
- embed_tokens (nn.Embedding): output embedding
- """
- def __init__(self,
- config: BartConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- embed_tokens: Optional[nn.Embedding] = None):
- super().__init__()
- self.cache_config = cache_config
- self.quant_config = quant_config
- self.lora_config = lora_config
- embed_dim = config.d_model
- self.max_source_positions = config.max_position_embeddings
- embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
- self.embed_tokens = BartScaledWordEmbedding(config.vocab_size,
- embed_dim,
- embed_scale=embed_scale)
- if embed_tokens is not None:
- self.embed_tokens.weight = embed_tokens.weight
- self.embed_positions = BartLearnedPositionalEmbedding(
- config.max_position_embeddings,
- embed_dim,
- )
- self.layers = nn.ModuleList(
- [BartEncoderLayer(config,cache_config,quant_config) \
- for _ in range(config.encoder_layers)])
- self.layernorm_embedding = nn.LayerNorm(embed_dim)
- def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata) -> torch.Tensor:
- r"""
- Args:
- input_ids
- Indices of *encoder* input sequence tokens in the vocabulary.
- Padding will be ignored by default should you
- provide it.
- positions
- Positions of *encoder* input sequence tokens.
- kv_caches:
- Layer-wise list of KV cache tensors
- attn_metadata:
- Aphrodite Attention metadata structure
- Returns:
- Decoder output torch.Tensor
- """
- # retrieve input_ids and inputs_embeds
- input_ids = input_ids.view(-1, input_ids.shape[-1])
- inputs_embeds = self.embed_tokens(input_ids)
- embed_pos = self.embed_positions(
- positions,
- AttentionType.ENCODER,
- )
- embed_pos = embed_pos.to(inputs_embeds.device)
- hidden_states = inputs_embeds + embed_pos
- hidden_states = self.layernorm_embedding(hidden_states)
- for idx, encoder_layer in enumerate(self.layers):
- hidden_states = encoder_layer(
- hidden_states=hidden_states,
- kv_cache=kv_caches[idx],
- attn_metadata=attn_metadata,
- )
- return hidden_states
- class BartDecoder(nn.Module):
- """
- Transformer decoder consisting of *config.decoder_layers* layers.
- Each layer is a [`BartDecoderLayer`]
- Args:
- config: BartConfig
- embed_tokens (nn.Embedding): output embedding
- """
- def __init__(
- self,
- config: BartConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- embed_tokens: Optional[nn.Embedding] = None,
- ):
- super().__init__()
- self.cache_config = cache_config
- self.quant_config = quant_config
- self.lora_config = lora_config
- self.max_target_positions = config.max_position_embeddings
- embed_scale = math.sqrt(
- config.d_model) if config.scale_embedding else 1.0
- self.embed_tokens = BartScaledWordEmbedding(config.vocab_size,
- config.d_model,
- embed_scale=embed_scale)
- if embed_tokens is not None:
- self.embed_tokens.weight = embed_tokens.weight
- self.embed_positions = BartLearnedPositionalEmbedding(
- config.max_position_embeddings,
- config.d_model,
- )
- self.layers = nn.ModuleList(
- [BartDecoderLayer(config,cache_config,quant_config) \
- for _ in range(config.decoder_layers)])
- self.layernorm_embedding = nn.LayerNorm(config.d_model)
- def forward(self, decoder_input_ids: torch.Tensor,
- decoder_positions: torch.Tensor,
- encoder_hidden_states: Optional[torch.Tensor],
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata) -> torch.Tensor:
- r"""
- Args:
- decoder_input_ids
- Indices of *decoder* input sequence tokens in the vocabulary.
- Padding will be ignored by default should you
- provide it.
- decoder_positions
- Positions of *decoder* input sequence tokens.
- encoder_hidden_states:
- Tensor of encoder output embeddings
- kv_caches:
- Layer-wise list of KV cache tensors
- attn_metadata:
- Aphrodite Attention metadata structure
- Returns:
- Decoder output torch.Tensor
- """
- inputs_embeds = self.embed_tokens(decoder_input_ids)
- # embed positions
- embed_pos = self.embed_positions(
- decoder_positions,
- AttentionType.DECODER,
- )
- embed_pos = embed_pos.to(inputs_embeds.device)
- hidden_states = inputs_embeds + embed_pos
- hidden_states = self.layernorm_embedding(hidden_states)
- # decoder layers
- for idx, decoder_layer in enumerate(self.layers):
- hidden_states = decoder_layer(
- decoder_hidden_states=hidden_states,
- kv_cache=kv_caches[idx],
- attn_metadata=attn_metadata,
- encoder_hidden_states=encoder_hidden_states,
- )
- return hidden_states
- class BartModel(nn.Module):
- _tied_weights_keys = [
- "encoder.embed_tokens.weight", "decoder.embed_tokens.weight"
- ]
- def __init__(self,
- config: BartConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None):
- super().__init__()
- self.config = config
- self.padding_idx = config.pad_token_id
- lora_vocab = (lora_config.lora_extra_vocab_size *
- (lora_config.max_loras or 1)) if lora_config else 0
- self.vocab_size = config.vocab_size + lora_vocab
- self.org_vocab_size = config.vocab_size
- self.encoder = BartEncoder(config,
- cache_config,
- quant_config=quant_config)
- self.decoder = BartDecoder(config,
- cache_config,
- quant_config=quant_config)
- def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
- encoder_input_ids: torch.Tensor,
- encoder_positions: torch.Tensor, kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata) -> torch.Tensor:
- r"""
- Args:
- input_ids
- Indices of *decoder* input sequence tokens in the vocabulary.
- Padding will be ignored by default should you
- provide it.
- positions
- Positions of *decoder* input sequence tokens.
- encoder_input_ids
- Indices of *encoder* input sequence tokens in the vocabulary.
- encoder_positions:
- Positions of *encoder* input sequence tokens.
- kv_caches:
- Layer-wise list of KV cache tensors
- attn_metadata:
- Aphrodite Attention metadata structure
- Returns:
- Model output torch.Tensor
- """
- encoder_hidden_states = None
- if encoder_input_ids.numel() > 0:
- # Run encoder attention if a non-zero number of encoder tokens
- # are provided as input
- encoder_hidden_states = self.encoder(input_ids=encoder_input_ids,
- positions=encoder_positions,
- kv_caches=kv_caches,
- attn_metadata=attn_metadata)
- # decoder outputs consists of
- # (dec_features, past_key_value, dec_hidden, dec_attn)
- decoder_outputs = self.decoder(
- decoder_input_ids=input_ids,
- decoder_positions=positions,
- encoder_hidden_states=encoder_hidden_states,
- kv_caches=kv_caches,
- attn_metadata=attn_metadata)
- return decoder_outputs
- class BartForConditionalGeneration(nn.Module):
- base_model_prefix = "model"
- def __init__(self,
- config: BartConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None):
- super().__init__()
- self.config = config
- self.model = BartModel(config,
- cache_config,
- quant_config,
- lora_config=lora_config)
- self.unpadded_vocab_size = config.vocab_size
- if lora_config:
- self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
- embed_scale = math.sqrt(
- config.d_model) if config.scale_embedding else 1.0
- self.lm_head = BartParallelLMHead(config.vocab_size,
- config.d_model,
- embed_scale=embed_scale)
- self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
- config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- encoder_input_ids: torch.Tensor,
- encoder_positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- r"""
- Args:
- input_ids
- torch.Tensor of *decoder* input token ids.
- positions
- torch.Tensor of *decoder* position indices.
- encoder_input_ids
- torch.Tensor of *encoder* input token ids.
- encoder_positions
- torch.Tensor of *encoder* position indices
- kv_caches:
- Layer-wise list of KV cache tensors
- attn_metadata:
- Aphrodite Attention metadata structure
- Returns:
- Output torch.Tensor
- """
- return self.model(input_ids, positions, encoder_input_ids,
- encoder_positions, kv_caches, attn_metadata)
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: Optional[torch.Tensor],
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- stacked_params_mapping = {
- "q_proj": {
- "param_name": "qkv_proj",
- "shard_id": "q",
- },
- "k_proj": {
- "param_name": "qkv_proj",
- "shard_id": "k",
- },
- "v_proj": {
- "param_name": "qkv_proj",
- "shard_id": "v",
- },
- }
- params_mapping = {
- "beta": "bias",
- "gamma": "weight",
- "LayerNorm": "layernorm",
- }
- def _rename_key(self, key: str):
- prefix = f"{self.base_model_prefix}."
- key = key[len(prefix):] if key.startswith(prefix) else key
- for src, dst in self.params_mapping.items():
- key = key.replace(src, dst)
- return key
- def _rename_stacked_param(
- self,
- name: str,
- ) -> Tuple[str, Optional[str]]:
- for key, mapping in self.stacked_params_mapping.items():
- if key in name:
- name = name.replace(key, mapping["param_name"])
- return name, mapping["shard_id"]
- return name, None
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- model_params_dict = dict(self.model.named_parameters())
- top_params_dict = dict(self.named_parameters())
- weights_tuple_list = list(weights)
- shared_embedding_weight = None
- shared_embedding_shard_id = None
- for name, loaded_weight in weights_tuple_list:
- name = self._rename_key(name)
- name, shard_id = self._rename_stacked_param(name)
- if ('shared.weight' in name
- or 'encoder.embed_tokens.weight' in name
- or 'decoder.embed_tokens.weight' in name
- or 'lm_head.weight' in name):
- assert shared_embedding_weight is None, (
- "Conflicting embedding weights.")
- shared_embedding_weight = loaded_weight
- shared_embedding_shard_id = shard_id
- else:
- # Skip the specific downstream task weight.
- if name.startswith('cls.'):
- continue
- # use Pooler instead.
- if name.startswith('pooler.'):
- continue
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in model_params_dict:
- continue
- param = model_params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- if shard_id:
- weight_loader(param, loaded_weight, shard_id)
- else:
- weight_loader(param, loaded_weight)
- # Assign shared weight values
- encoder_in_param = model_params_dict['encoder.embed_tokens.weight']
- encoder_in_weight_loader = getattr(encoder_in_param, "weight_loader",
- default_weight_loader)
- decoder_in_param = model_params_dict['decoder.embed_tokens.weight']
- decoder_in_weight_loader = getattr(decoder_in_param, "weight_loader",
- default_weight_loader)
- lm_head_in_param = top_params_dict['lm_head.weight']
- lm_head_in_weight_loader = getattr(lm_head_in_param, "weight_loader",
- default_weight_loader)
- assert shared_embedding_weight is not None
- if shared_embedding_shard_id:
- encoder_in_weight_loader(encoder_in_param, shared_embedding_weight,
- shared_embedding_shard_id)
- decoder_in_weight_loader(decoder_in_param, shared_embedding_weight,
- shared_embedding_shard_id)
- lm_head_in_weight_loader(lm_head_in_param, shared_embedding_weight,
- shared_embedding_shard_id)
- else:
- encoder_in_weight_loader(encoder_in_param, shared_embedding_weight)
- decoder_in_weight_loader(decoder_in_param, shared_embedding_weight)
- lm_head_in_weight_loader(lm_head_in_param, shared_embedding_weight)
|