123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380 |
- from typing import List, Optional, Tuple, Type, overload
- import pytest
- import transformers
- from transformers import (AutoConfig, AutoModelForVision2Seq, AutoTokenizer,
- BatchEncoding)
- from aphrodite.common.sequence import SampleLogprobs
- from aphrodite.common.utils import STR_DTYPE_TO_TORCH_DTYPE
- from aphrodite.multimodal.utils import (rescale_image_size, rescale_video_size,
- resize_video, sample_frames_from_video)
- from ....conftest import (VIDEO_ASSETS, AphroditeRunner, HfRunner,
- PromptImageInput, _VideoAssets)
- from ...utils import check_logprobs_close
- # Video test
- HF_VIDEO_PROMPTS = VIDEO_ASSETS.prompts(
- {
- "sample_demo_1": "<|im_start|>user <video>\nwhy is this video funny? \
- <|im_end|><|im_start|>assistant\n"
- }
- )
- models = ["llava-hf/llava-onevision-qwen2-7b-ov-hf"]
- def aphrodite_to_hf_output(
- aphrodite_output: Tuple[List[int], str, Optional[SampleLogprobs]], model: str
- ):
- """Sanitize aphrodite output to be comparable with hf output."""
- output_ids, output_str, out_logprobs = aphrodite_output
- config = AutoConfig.from_pretrained(model)
- video_token_id = config.video_token_index
- tokenizer = AutoTokenizer.from_pretrained(model)
- eos_token_id = tokenizer.eos_token_id
- hf_output_ids = [
- token_id
- for idx, token_id in enumerate(output_ids)
- if token_id != video_token_id or output_ids[idx - 1] != video_token_id
- ]
- hf_output_str = output_str
- if hf_output_ids[-1] == eos_token_id:
- hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
- return hf_output_ids, hf_output_str, out_logprobs
- @overload
- def run_video_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- video_assets: _VideoAssets,
- model: str,
- *,
- size_factors: List[float],
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- num_frames: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- ...
- @overload
- def run_video_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- video_assets: _VideoAssets,
- model: str,
- *,
- sizes: List[Tuple[int, int]],
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- num_frames: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- ...
- def run_video_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- video_assets: _VideoAssets,
- model: str,
- *,
- size_factors: Optional[List[float]] = None,
- sizes: Optional[List[Tuple[int, int]]] = None,
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- num_frames: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype]
- videos = [
- sample_frames_from_video(asset.np_ndarrays, num_frames)
- for asset in video_assets
- ]
- if size_factors is not None:
- inputs_per_video = [
- (
- [prompt for _ in size_factors],
- [rescale_video_size(video, factor) for factor in size_factors],
- )
- for video, prompt in zip(videos, HF_VIDEO_PROMPTS)
- ]
- elif sizes is not None:
- inputs_per_video = [
- (
- [prompt for _ in sizes],
- [resize_video(video, size) for size in sizes],
- )
- for video, prompt in zip(videos, HF_VIDEO_PROMPTS)
- ]
- else:
- raise ValueError("You must provide either `size_factors` or `sizes`")
- # max_model_len should be greater than image_feature_size
- with aphrodite_runner(
- model,
- dtype=dtype,
- max_model_len=4096,
- tensor_parallel_size=tensor_parallel_size,
- distributed_executor_backend=distributed_executor_backend,
- enforce_eager=True,
- ) as aphrodite_model:
- aphrodite_outputs_per_video = [
- aphrodite_model.generate_greedy_logprobs(
- prompts, max_tokens, num_logprobs=num_logprobs, videos=videos
- )
- for prompts, videos in inputs_per_video
- ]
- def process(hf_inputs: BatchEncoding):
- hf_inputs["pixel_values_videos"] = hf_inputs["pixel_values_videos"].to(
- torch_dtype
- ) # type: ignore
- return hf_inputs
- with hf_runner(
- model,
- dtype=dtype,
- postprocess_inputs=process,
- auto_cls=AutoModelForVision2Seq,
- ) as hf_model:
- hf_outputs_per_video = [
- hf_model.generate_greedy_logprobs_limit(
- prompts, max_tokens, num_logprobs=num_logprobs, videos=videos
- )
- for prompts, videos in inputs_per_video
- ]
- for hf_outputs, aphrodite_outputs in zip(
- hf_outputs_per_video, aphrodite_outputs_per_video
- ):
- # TODO: Check whether using original CLIPVisionModel can improve
- # consistency against HF
- check_logprobs_close(
- outputs_0_lst=hf_outputs,
- outputs_1_lst=[
- aphrodite_to_hf_output(aphrodite_output, model)
- for aphrodite_output in aphrodite_outputs
- ],
- name_0="hf",
- name_1="aphrodite",
- )
- @pytest.mark.skipif(
- transformers.__version__ < "4.45",
- reason="Waiting for next transformers release",
- )
- @pytest.mark.parametrize("model", models)
- @pytest.mark.parametrize(
- "size_factors",
- [
- # No video
- [],
- # Single-scale
- [1.0],
- # Single-scale, batched
- [1.0, 1.0, 1.0],
- # Multi-scale
- [0.25, 0.5, 1.0],
- ],
- )
- @pytest.mark.parametrize("dtype", ["half"])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- @pytest.mark.parametrize("num_frames", [16])
- def test_models(
- hf_runner,
- aphrodite_runner,
- video_assets,
- model,
- size_factors,
- dtype,
- max_tokens,
- num_logprobs,
- num_frames,
- ) -> None:
- """Inference result should be the same between hf and aphrodite.
- All the image fixtures for the test is under tests/videos.
- For huggingface runner, we provide the np.ndarray as input.
- For aphrodite runner, we provide MultiModalDataDict objects
- and corresponding MultiModalConfig as input.
- Note, the text input is also adjusted to abide by aphrodite contract.
- The text output is sanitized to be able to compare with hf.
- """
- run_video_test(
- hf_runner,
- aphrodite_runner,
- video_assets,
- model,
- size_factors=size_factors,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- num_frames=num_frames,
- tensor_parallel_size=1,
- )
- @pytest.mark.skipif(
- transformers.__version__ < "4.45",
- reason="Waiting for next transformers release",
- )
- @pytest.mark.parametrize("model", models)
- @pytest.mark.parametrize(
- "sizes",
- [[(1669, 2560), (2560, 1669), (183, 488), (488, 183)]],
- )
- @pytest.mark.parametrize("dtype", ["half"])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- @pytest.mark.parametrize("num_frames", [16])
- def test_models_fixed_sizes(
- hf_runner,
- aphrodite_runner,
- video_assets,
- model,
- sizes,
- dtype,
- max_tokens,
- num_logprobs,
- num_frames,
- ) -> None:
- run_video_test(
- hf_runner,
- aphrodite_runner,
- video_assets,
- model,
- sizes=sizes,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- num_frames=num_frames,
- tensor_parallel_size=1,
- )
- # Image test
- _LIMIT_IMAGE_PER_PROMPT = 4
- def run_image_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- inputs: List[Tuple[List[str], PromptImageInput]],
- model: str,
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype]
- # max_model_len should be greater than image_feature_size
- with aphrodite_runner(
- model,
- dtype=dtype,
- max_model_len=32768,
- tensor_parallel_size=tensor_parallel_size,
- distributed_executor_backend=distributed_executor_backend,
- enforce_eager=True,
- limit_mm_per_prompt={"image": _LIMIT_IMAGE_PER_PROMPT},
- ) as aphrodite_model:
- aphrodite_outputs_per_image = [
- aphrodite_model.generate_greedy_logprobs(
- prompts, max_tokens, num_logprobs=num_logprobs, images=images
- )
- for prompts, images in inputs
- ]
- def process(hf_inputs: BatchEncoding):
- hf_inputs["pixel_values"] = hf_inputs["pixel_values"].to(torch_dtype) # type: ignore
- return hf_inputs
- with hf_runner(
- model,
- dtype=dtype,
- postprocess_inputs=process,
- auto_cls=AutoModelForVision2Seq,
- ) as hf_model:
- hf_outputs_per_image = [
- hf_model.generate_greedy_logprobs_limit(
- prompts, max_tokens, num_logprobs=num_logprobs, images=images
- )
- for prompts, images in inputs
- ]
- for hf_outputs, aphrodite_outputs in zip(
- hf_outputs_per_image, aphrodite_outputs_per_image
- ):
- # TODO: Check whether using original CLIPVisionModel can improve
- # consistency against HF
- check_logprobs_close(
- outputs_0_lst=hf_outputs,
- outputs_1_lst=[
- aphrodite_to_hf_output(aphrodite_output, model)
- for aphrodite_output in aphrodite_outputs
- ],
- name_0="hf",
- name_1="aphrodite",
- )
- @pytest.mark.skipif(
- transformers.__version__ < "4.45",
- reason="Waiting for next transformers release",
- )
- @pytest.mark.parametrize("model", models)
- @pytest.mark.parametrize("dtype", ["half"])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- def test_models_multiple_image_inputs(
- hf_runner, aphrodite_runner, image_assets, model, dtype, max_tokens, num_logprobs
- ) -> None:
- stop_sign = image_assets[0].pil_image
- cherry_blossom = image_assets[1].pil_image
- inputs = [
- (
- [
- "<|im_start|>user <image><image>\nDescribe 2 images. \
- <|im_end|><|im_start|>assistant\n",
- "<|im_start|>user <image><image>\nDescribe 2 images. \
- <|im_end|><|im_start|>assistant\n",
- "<|im_start|>user <image><image><image><image>\nDescribe 4 images. \
- <|im_end|><|im_start|>assistant\n",
- "<|im_start|>user <image>\nWhat is the season? \
- <|im_end|><|im_start|>assistant\n",
- ],
- [
- [stop_sign, cherry_blossom],
- # Images with different sizes and aspect-ratios
- [
- rescale_image_size(stop_sign, 0.1),
- stop_sign,
- ],
- [
- stop_sign,
- rescale_image_size(stop_sign, 0.25),
- cherry_blossom.resize((183, 488)),
- cherry_blossom.resize((488, 183)),
- ],
- cherry_blossom,
- ],
- )
- ]
- run_image_test(
- hf_runner,
- aphrodite_runner,
- inputs,
- model,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- tensor_parallel_size=1,
- )
|