123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440 |
- /******************************************************************************
- * Copyright (c) 2023, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include <assert.h>
- #include <stdint.h>
- #include <stdlib.h>
- #include <cuda_fp16.h>
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
- #include <cuda_bf16.h>
- #endif
- #include <cute/tensor.hpp>
- #include <cutlass/array.h>
- #include <cutlass/cutlass.h>
- #include <cutlass/numeric_conversion.h>
- #include <cutlass/numeric_types.h>
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- namespace flash {
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<typename T>
- __forceinline__ __device__ uint32_t relu2(const uint32_t x);
- template<>
- __forceinline__ __device__ uint32_t relu2<cutlass::half_t>(const uint32_t x) {
- uint32_t res;
- const uint32_t zero = 0u;
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
- asm volatile("max.f16x2 %0, %1, %2;\n" : "=r"(res) : "r"(x), "r"(zero));
- #else
- asm volatile( \
- "{\n" \
- "\t .reg .f16x2 sela;\n" \
- "\t set.gtu.u32.f16x2 sela, %1, %2;\n" \
- "\t and.b32 %0, sela, %1;\n"
- "}\n" : "=r"(res) : "r"(x), "r"(zero));
- #endif
- return res;
- }
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
- template<>
- __forceinline__ __device__ uint32_t relu2<cutlass::bfloat16_t>(const uint32_t x) {
- uint32_t res;
- const uint32_t zero = 0u;
- asm volatile("max.bf16x2 %0, %1, %2;\n" : "=r"(res) : "r"(x), "r"(zero));
- return res;
- }
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
- template<typename T>
- __forceinline__ __device__ uint32_t convert_relu2(const float2 x);
- template<>
- __forceinline__ __device__ uint32_t convert_relu2<cutlass::half_t>(const float2 x) {
- uint32_t res;
- const uint32_t a = reinterpret_cast<const uint32_t&>(x.x);
- const uint32_t b = reinterpret_cast<const uint32_t&>(x.y);
- asm volatile("cvt.rn.relu.f16x2.f32 %0, %1, %2;\n" : "=r"(res) : "r"(b), "r"(a));
- return res;
- }
- template<>
- __forceinline__ __device__ uint32_t convert_relu2<cutlass::bfloat16_t>(const float2 x) {
- uint32_t res;
- const uint32_t a = reinterpret_cast<const uint32_t&>(x.x);
- const uint32_t b = reinterpret_cast<const uint32_t&>(x.y);
- asm volatile("cvt.rn.relu.bf16x2.f32 %0, %1, %2;\n" : "=r"(res) : "r"(b), "r"(a));
- return res;
- }
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<typename T>
- struct MaxOp {
- __device__ __forceinline__ T operator()(T const & x, T const & y) { return x > y ? x : y; }
- };
- template <>
- struct MaxOp<float> {
- // This is slightly faster
- __device__ __forceinline__ float operator()(float const &x, float const &y) { return max(x, y); }
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<typename T>
- struct SumOp {
- __device__ __forceinline__ T operator()(T const & x, T const & y) { return x + y; }
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<int THREADS>
- struct Allreduce {
- static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
- template<typename T, typename Operator>
- static __device__ __forceinline__ T run(T x, Operator &op) {
- constexpr int OFFSET = THREADS / 2;
- x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
- return Allreduce<OFFSET>::run(x, op);
- }
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<>
- struct Allreduce<2> {
- template<typename T, typename Operator>
- static __device__ __forceinline__ T run(T x, Operator &op) {
- x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
- return x;
- }
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<bool A_in_regs=false, bool B_in_regs=false, typename Tensor0, typename Tensor1,
- typename Tensor2, typename Tensor3, typename Tensor4,
- typename TiledMma, typename TiledCopyA, typename TiledCopyB,
- typename ThrCopyA, typename ThrCopyB>
- __forceinline__ __device__ void gemm(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsA,
- Tensor4 const& tCsB, TiledMma tiled_mma,
- TiledCopyA smem_tiled_copy_A, TiledCopyB smem_tiled_copy_B,
- ThrCopyA smem_thr_copy_A, ThrCopyB smem_thr_copy_B) {
- CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc)); // MMA_M
- CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc)); // MMA_N
- CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB)); // MMA_K
- Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
- CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view)); // M
- Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
- CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view)); // N
- if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{})); }
- if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{})); }
- #pragma unroll
- for (int i = 0; i < size<2>(tCrA); ++i) {
- if (i < size<2>(tCrA) - 1) {
- if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, i + 1), tCrA_copy_view(_, _, i + 1)); }
- if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1)); }
- }
- cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
- }
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<typename Tensor0, typename Tensor1, typename Tensor2, typename Tensor3,
- typename TiledMma, typename TiledCopy, typename ThrCopy>
- __forceinline__ __device__ void gemm_rs(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsB,
- TiledMma tiled_mma, TiledCopy smem_tiled_copy_B,
- ThrCopy smem_thr_copy_B) {
- CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc)); // MMA_M
- CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc)); // MMA_N
- CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB)); // MMA_K
- Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
- CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view)); // N
- cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{}));
- #pragma unroll
- for (int i = 0; i < size<2>(tCrA); ++i) {
- if (i < size<2>(tCrA) - 1) {
- cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1));
- }
- cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
- }
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // Convert acc_layout from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
- template<typename Layout>
- __forceinline__ __device__ auto convert_layout_acc_rowcol(Layout acc_layout) {
- static_assert(decltype(size<0>(acc_layout))::value == 4);
- static_assert(decltype(rank(acc_layout))::value == 3);
- auto l = logical_divide(acc_layout, Shape<_2>{}); // ((2, 2), MMA_M, MMA_N)
- return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // Convert acc_layout from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
- // if using m16n8k16, or to (4, MMA_M, MMA_N) if using m16n8k8.
- template<typename MMA_traits, typename Layout>
- __forceinline__ __device__ auto convert_layout_acc_Aregs(Layout acc_layout) {
- using X = Underscore;
- static_assert(decltype(size<0>(acc_layout))::value == 4);
- static_assert(decltype(rank(acc_layout))::value == 3);
- constexpr int mma_shape_K = get<2>(typename MMA_traits::Shape_MNK{});
- static_assert(mma_shape_K == 8 || mma_shape_K == 16);
- if constexpr (mma_shape_K == 8) {
- return acc_layout;
- } else {
- auto l = logical_divide(acc_layout, Shape<X, X, _2>{}); // (4, MMA_M, (2, MMA_N / 2)))
- return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
- }
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // Convert acc_layout from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
- template<typename Layout>
- __forceinline__ __device__ auto convert_layout_acc_dropout(Layout acc_layout) {
- using X = Underscore;
- static_assert(decltype(size<0>(acc_layout))::value == 4);
- static_assert(decltype(rank(acc_layout))::value == 3);
- auto l = logical_divide(acc_layout, Shape<X, X, _2>{}); // (4, MMA_M, (2, MMA_N / 2)))
- return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template <typename To_type, typename Engine, typename Layout>
- __forceinline__ __device__ auto convert_type(Tensor<Engine, Layout> const &tensor) {
- using From_type = typename Engine::value_type;
- constexpr int numel = decltype(size(tensor))::value;
- cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
- // HACK: this requires tensor to be "contiguous"
- auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
- return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template <typename Engine, typename Layout>
- __forceinline__ __device__ void relu_(Tensor<Engine, Layout> &tensor) {
- constexpr int numel = decltype(size(tensor))::value;
- static_assert(numel % 2 == 0);
- using value_t = typename Engine::value_type;
- // HACK: this requires tensor to be "contiguous"
- Tensor tensor_uint32 = recast<uint32_t>(tensor);
- #pragma unroll
- for (int i = 0; i < size(tensor_uint32); ++i) {
- tensor_uint32(i) = relu2<value_t>(tensor_uint32(i));
- }
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // On SM80 and above, we can fuse fp32 -> fp16/bf16 conversion and relu into 1 instruction
- template <typename To_type, typename Engine, typename Layout>
- __forceinline__ __device__ auto convert_type_relu(Tensor<Engine, Layout> const &tensor) {
- using From_type = typename Engine::value_type;
- static_assert(std::is_same_v<To_type, cutlass::half_t> || std::is_same_v<To_type, cutlass::bfloat16_t>);
- static_assert(std::is_same_v<float, From_type>);
- constexpr int numel = decltype(size(tensor))::value;
- static_assert(numel % 2 == 0);
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
- // HACK: this requires tensor to be "contiguous"
- Tensor tensor_float2 = recast<float2>(tensor);
- Tensor out_uint32 = make_tensor<uint32_t>(tensor_float2.layout());
- #pragma unroll
- for (int i = 0; i < size(out_uint32); ++i) {
- out_uint32(i) = convert_relu2<To_type>(tensor_float2(i));
- }
- Tensor out = make_tensor(make_rmem_ptr<To_type>(out_uint32.data()), tensor.layout());
- #else
- Tensor out = flash::convert_type<To_type>(tensor);
- flash::relu_(out);
- #endif
- return out;
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // Blocks until all but N previous cp.async.commit_group operations have committed.
- // This differs from cute::cp_async_wait in that when N = 0 we don't call cp.async.wait_all
- // (which is equivalent to commit_group then wait_group 0).
- // Instead we just call cp.async.wait_group 0, which is slightly faster.
- // https://github.com/NVIDIA/cutlass/blob/master/include/cute/arch/copy_sm80.hpp#L113
- template <int N>
- CUTE_HOST_DEVICE
- void cp_async_wait() {
- #if defined(CUTE_ARCH_CP_ASYNC_SM80_ENABLED)
- asm volatile("cp.async.wait_group %0;\n" :: "n"(N));
- #endif
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // resolves offset of a slice of a paged kv copy from gmem.
- // assumes that the tensor has already been positioned at the correct head.
- template <typename Kernel_traits>
- __forceinline__ __device__
- int64_t resolve_thread_kv_page_slice_offset(const int tidx, const int n_block_max, const int page_block_size,
- const int* block_table, const int page_stride, const int row_stride) {
- constexpr int kGmemThreadsPerRow = Kernel_traits::kGmemThreadsPerRow;
- constexpr int kGmemRowsPerThread = Kernel_traits::kGmemRowsPerThread;
- constexpr int kGmemElemsPerLoad = Kernel_traits::kGmemElemsPerLoad;
- constexpr int kBlockN = Kernel_traits::kBlockN;
-
- const int64_t col_offset = tidx % kGmemThreadsPerRow * kGmemElemsPerLoad;
- const int64_t block_row_offset = tidx / kGmemThreadsPerRow * kGmemRowsPerThread;
- const int64_t global_row_offset = block_row_offset + (n_block_max - 1) * kBlockN;
- const int64_t page_offset = global_row_offset % page_block_size;
- const int64_t virtual_page_idx = global_row_offset / page_block_size;
- return ((int64_t) block_table[virtual_page_idx]) * ((int64_t) page_stride)
- + page_offset * ((int64_t) row_stride)
- + col_offset;
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // Layout reshape function. Given a layout with modes ((v1, v2), m, k), returns (v1, v2, k),
- // where v2 may be a tuple itself, in the case of swizzled smem-backed thread tiles. This ensures
- // that paged and non-paged copies result in equivalently shaped, if not necessarily strided, tensors.
- template <class Shape, class Stride>
- __forceinline__ __device__
- auto reshape_thread_tile(Layout<Shape, Stride> l) {
- return make_layout(append(get<0>(l.shape()), get<2>(l.shape())),
- append(get<0>(l.stride()), get<2>(l.stride())));
- }
- // reshapes and flattens the thread tile layout. A separate function is needed for the case where
- // one of the modes of l is a layout itself and must be flattened, as opposed to keeping it intact
- // for the case of swizzled layouts
- template <class Shape, class Stride>
- __forceinline__ __device__
- auto reshape_flatten_thread_tile(Layout<Shape, Stride> l) {
- auto mode_0 = filter(flatten(get<0>(l)));
- return make_layout(append(mode_0.shape(), get<2>(l.shape())),
- append(mode_0.stride(), get<2>(l.stride())));
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template <bool Is_even_MN=true, bool Is_even_K=true, bool Clear_OOB_MN=false, bool Clear_OOB_K=true,
- typename TiledCopy, typename Engine0, typename Layout0, typename Engine1, typename Layout1,
- typename Engine2, typename Layout2, typename Engine3, typename Layout3>
- __forceinline__ __device__ void copy(TiledCopy tiled_copy, Tensor<Engine0, Layout0> const &S,
- Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
- Tensor<Engine3, Layout3> const &predicate_K, const int max_MN=0) {
- CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
- CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
- CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
- CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
- CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
- // There's no case where !Clear_OOB_K && Clear_OOB_MN
- static_assert(!(Clear_OOB_MN && !Clear_OOB_K));
- #pragma unroll
- for (int m = 0; m < size<1>(S); ++m) {
- if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
- #pragma unroll
- for (int k = 0; k < size<2>(S); ++k) {
- if (Is_even_K || predicate_K(k)) {
- cute::copy(tiled_copy, S(_, m, k), D(_, m, k));
- } else if (Clear_OOB_K) {
- cute::clear(D(_, m, k));
- }
- }
- } else if (Clear_OOB_MN) {
- cute::clear(D(_, m, _));
- }
- }
- // TD [2023-04-13]: Strange that the code below can cause race condition.
- // I think it's because the copies are under an if statement.
- // if (Is_even_K) {
- // #pragma unroll
- // for (int m = 0; m < size<1>(S); ++m) {
- // if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
- // copy(tiled_copy, S(_, m, _), D(_, m, _));
- // } else if (Clear_OOB_MN) {
- // clear(D(_, m, _));
- // }
- // }
- // } else { // It's slightly faster in this case if iterate over K first
- // #pragma unroll
- // for (int k = 0; k < size<2>(S); ++k) {
- // if (predicate_K(k)) {
- // #pragma unroll
- // for (int m = 0; m < size<1>(S); ++m) {
- // if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
- // copy(tiled_copy, S(_, m, k), D(_, m, k));
- // } else if (Clear_OOB_MN) {
- // clear(D(_, m, k));
- // }
- // }
- // } else if (Clear_OOB_K) { // There's no case where !Clear_OOB_K && Clear_OOB_MN
- // if (Clear_OOB_MN || Is_even_MN) {
- // clear(D(_, _, k));
- // } else {
- // #pragma unroll
- // for (int m = 0; m < size<1>(S); ++m) {
- // if (!(Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN)) {
- // clear(D(_, m, k));
- // }
- // }
- // }
- // }
- // }
- // }
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template <bool Is_even_K=true,
- typename Engine0, typename Layout0, typename Engine1, typename Layout1,
- typename Engine2, typename Layout2, typename Engine3, typename Layout3>
- __forceinline__ __device__ void copy_w_min_idx(Tensor<Engine0, Layout0> const &S,
- Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
- Tensor<Engine3, Layout3> const &predicate_K,
- const int max_MN=0, const int min_MN=0) {
- CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
- CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
- CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
- CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
- CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
- // if (threadIdx.x == 0 && blockIdx.z == 0) { printf("blockIdx.y = %d, max_MN = %d, min_MN = %d\n", blockIdx.y, max_MN, min_MN); }
- #pragma unroll
- for (int m = 0; m < size<1>(S); ++m) {
- // if (threadIdx.x == 0 && blockIdx.z == 0) { printf("blockIdx.y = %d, m = %d\n", blockIdx.y, get<0>(identity_MN(0, m, 0))); }
- if (get<0>(identity_MN(0, m, 0)) >= min_MN && get<0>(identity_MN(0, m, 0)) < max_MN) {
- // if (threadIdx.x == 0 && blockIdx.z == 0) { printf("Inner loop, blockIdx.y = %d, m = %d\n", blockIdx.y, get<0>(identity_MN(0, m, 0))); }
- #pragma unroll
- for (int k = 0; k < size<2>(S); ++k) {
- if (Is_even_K || predicate_K(k)) {
- cute::copy(S(_, m, k), D(_, m, k));
- }
- }
- }
- }
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- } // namespace flash
|