123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- /******************************************************************************
- * Copyright (c) 2024, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include <cute/tensor.hpp>
- namespace flash {
- using namespace cute;
- template <typename Engine, typename Layout>
- __forceinline__ __device__ void apply_mask(Tensor<Engine, Layout> &tensor, const int max_seqlen_k,
- const int col_idx_offset_ = 0) {
- // tensor has shape (nrow=(2, MMA_M), ncol=(2, MMA_N))
- static_assert(Layout::rank == 2, "Only support 2D Tensor");
- const int lane_id = threadIdx.x % 32;
- const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
- #pragma unroll
- for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
- const int col_idx_base = col_idx_offset + nj * 8;
- #pragma unroll
- for (int j = 0; j < size<1, 0>(tensor); ++j) {
- const int col_idx = col_idx_base + j;
- if (col_idx >= max_seqlen_k) {
- // Without the "make_coord" we get wrong results
- #pragma unroll
- for (int mi = 0; mi < size<0>(tensor); ++mi) {
- tensor(mi, make_coord(j, nj)) = -INFINITY;
- }
- }
- }
- }
- }
- template <bool HasWSLeft=true, typename Engine, typename Layout>
- __forceinline__ __device__ void apply_mask_local(Tensor<Engine, Layout> &tensor, const int col_idx_offset_,
- const int max_seqlen_k, const int row_idx_offset,
- const int max_seqlen_q, const int warp_row_stride,
- const int window_size_left, const int window_size_right) {
- // tensor has shape (nrow=(2, MMA_M), ncol=(2, MMA_N))
- static_assert(Layout::rank == 2, "Only support 2D Tensor");
- const int lane_id = threadIdx.x % 32;
- const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
- #pragma unroll
- for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
- const int row_idx_base = row_idx_offset + mi * warp_row_stride;
- #pragma unroll
- for (int i = 0; i < size<0, 0>(tensor); ++i) {
- const int row_idx = row_idx_base + i * 8;
- const int col_idx_limit_left = std::max(0, row_idx + max_seqlen_k - max_seqlen_q - window_size_left);
- const int col_idx_limit_right = std::min(max_seqlen_k, row_idx + 1 + max_seqlen_k - max_seqlen_q + window_size_right);
- #pragma unroll
- for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
- const int col_idx_base = col_idx_offset + nj * 8;
- #pragma unroll
- for (int j = 0; j < size<1, 0>(tensor); ++j) {
- const int col_idx = col_idx_base + j;
- if (col_idx >= col_idx_limit_right || (HasWSLeft && col_idx < col_idx_limit_left)) {
- tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
- }
- }
- }
- // if (cute::thread0()) {
- // printf("mi = %d, i = %d, row_idx = %d, max_seqlen_k = %d\n", mi, i, row_idx, max_seqlen_k);
- // print(tensor(make_coord(i, mi), _));
- // // print(tensor(_, j + nj * size<1, 0>(tensor)));
- // }
- }
- }
- }
- template <typename Engine, typename Layout>
- __forceinline__ __device__ void apply_mask_causal(Tensor<Engine, Layout> &tensor, const int col_idx_offset_,
- const int max_seqlen_k, const int row_idx_offset,
- const int max_seqlen_q, const int warp_row_stride) {
- // Causal masking is equivalent to local masking with window_size_left = infinity and window_size_right = 0
- apply_mask_local</*HasWSLeft=*/false>(tensor, col_idx_offset_, max_seqlen_k, row_idx_offset,
- max_seqlen_q, warp_row_stride, -1, 0);
- }
- template <typename Engine0, typename Layout0, typename Engine1, typename Layout1>
- __forceinline__ __device__ void apply_mask_causal_w_idx(
- Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &idx_rowcol,
- const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset)
- {
- // tensor has shape (nrow=(2, MMA_M), ncol=(2, MMA_N))
- static_assert(Layout0::rank == 2, "Only support 2D Tensor");
- static_assert(Layout1::rank == 2, "Only support 2D Tensor");
- CUTE_STATIC_ASSERT_V(size<0>(tensor) == size<0>(idx_rowcol));
- CUTE_STATIC_ASSERT_V(size<1>(tensor) == size<1>(idx_rowcol));
- #pragma unroll
- for (int mi = 0; mi < size<0>(tensor); ++mi) {
- const int col_idx_limit = std::min(max_seqlen_k, 1 + row_idx_offset + get<0>(idx_rowcol(mi, 0)));
- #pragma unroll
- for (int ni = 0; ni < size<1, 1>(tensor); ++ni) {
- if (col_idx_offset_ + get<1>(idx_rowcol(0, ni)) >= col_idx_limit) {
- tensor(mi, ni) = -INFINITY;
- }
- }
- // if (cute::thread0()) {
- // printf("ni = %d, j = %d, col_idx = %d, max_seqlen_k = %d\n", ni, j, col_idx, max_seqlen_k);
- // print(tensor(_, make_coord(j, ni)));
- // // print(tensor(_, j + ni * size<1, 0>(tensor)));
- // }
- }
- }
- template <bool Is_causal, bool Is_local, bool Has_alibi>
- struct Mask {
- const int max_seqlen_k, max_seqlen_q;
- const int window_size_left, window_size_right;
- const float alibi_slope;
- __forceinline__ __device__ Mask(const int max_seqlen_k, const int max_seqlen_q,
- const int window_size_left, const int window_size_right,
- const float alibi_slope=0.f)
- : max_seqlen_k(max_seqlen_k)
- , max_seqlen_q(max_seqlen_q)
- , window_size_left(window_size_left)
- , window_size_right(window_size_right)
- , alibi_slope(!Has_alibi ? 0.0 : alibi_slope) {
- };
- // Causal_mask: whether this particular iteration needs causal masking
- template <bool Causal_mask=false, bool Is_even_MN=true, typename Engine, typename Layout>
- __forceinline__ __device__ void apply_mask(Tensor<Engine, Layout> &tensor_,
- const int col_idx_offset_,
- const int row_idx_offset,
- const int warp_row_stride) {
- static_assert(!(Causal_mask && Is_local), "Cannot be both causal and local");
- static_assert(Layout::rank == 3, "Only support 3D Tensor");
- static_assert(decltype(size<0>(tensor_))::value == 4, "First dimension must be 4");
- static constexpr bool Need_masking = Has_alibi || Causal_mask || Is_local || !Is_even_MN;
- // if (cute::thread0()) { printf("Has_alibi = %d, Causal_mask=%d, Is_local=%d, Is_even_MN = %d, Need_masking = %d\n", Has_alibi, Causal_mask, Is_local, Is_even_MN, Need_masking); }
- if constexpr (Need_masking) {
- // Reshape tensor_ from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
- Tensor tensor = make_tensor(tensor_.data(), flash::convert_layout_acc_rowcol(tensor_.layout()));
- // Do we need both row and column indices, or just column incides?
- static constexpr bool Col_idx_only = !(Has_alibi && !Is_causal) && !Is_local && !Causal_mask;
- const int lane_id = threadIdx.x % 32;
- const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
- if constexpr (Col_idx_only) {
- #pragma unroll
- for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
- const int col_idx_base = col_idx_offset + nj * 8;
- #pragma unroll
- for (int j = 0; j < size<1, 0>(tensor); ++j) {
- const int col_idx = col_idx_base + j;
- #pragma unroll
- for (int mi = 0; mi < size<0>(tensor); ++mi) {
- // No causal, no local
- if constexpr (Has_alibi) {
- tensor(mi, make_coord(j, nj)) += alibi_slope * col_idx;
- }
- if constexpr (!Is_even_MN) {
- if (col_idx >= max_seqlen_k) { tensor(mi, make_coord(j, nj)) = -INFINITY; }
- }
- }
- }
- }
- } else {
- #pragma unroll
- for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
- const int row_idx_base = row_idx_offset + mi * warp_row_stride;
- #pragma unroll
- for (int i = 0; i < size<0, 0>(tensor); ++i) {
- const int row_idx = row_idx_base + i * 8;
- const int col_idx_limit_left = std::max(0, row_idx + max_seqlen_k - max_seqlen_q - window_size_left);
- const int col_idx_limit_right = std::min(max_seqlen_k, row_idx + 1 + max_seqlen_k - max_seqlen_q + window_size_right);
- #pragma unroll
- for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
- const int col_idx_base = col_idx_offset + nj * 8;
- #pragma unroll
- for (int j = 0; j < size<1, 0>(tensor); ++j) {
- const int col_idx = col_idx_base + j;
- if constexpr (Has_alibi) {
- if constexpr (Is_causal) {
- tensor(make_coord(i, mi), make_coord(j, nj)) += alibi_slope * col_idx;
- } else {
- tensor(make_coord(i, mi), make_coord(j, nj)) -= alibi_slope * abs(row_idx + max_seqlen_k - max_seqlen_q - col_idx);
- }
- }
- if constexpr (Causal_mask) {
- if (col_idx >= col_idx_limit_right) {
- tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
- }
- }
- if constexpr (Is_local) {
- if (col_idx >= col_idx_limit_right || col_idx < col_idx_limit_left) {
- tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
- }
- }
- if constexpr (!Causal_mask && !Is_local && !Is_even_MN) {
- // Causal and Local already handles MN masking
- if (col_idx >= max_seqlen_k) {
- tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
- }
- }
- }
- }
- }
- }
- }
- }
- };
- };
- } // namespace flash
|