123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- /******************************************************************************
- * Copyright (c) 2024, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include "philox.cuh"
- #include "utils.h"
- namespace flash {
- struct Dropout {
- const unsigned long long seed, offset;
- const uint8_t p_dropout_in_uint8_t;
- __forceinline__ __device__ Dropout(const unsigned long long seed,
- const unsigned long long offset,
- const uint8_t p_dropout_in_uint8_t,
- const int bid, const int hid,
- const int tid, const int nheads)
- : seed(seed),
- offset(offset + (bid * nheads + hid) * 32 + tid % 32),
- p_dropout_in_uint8_t(p_dropout_in_uint8_t) {}
- template <bool encode_dropout_in_sign_bit = false, typename Engine,
- typename Layout>
- __forceinline__ __device__ void apply_dropout(Tensor<Engine, Layout>& tensor_,
- int block_row_start,
- int block_col_start,
- int block_row_stride) {
- // convert shape from (4, MMA_M, MMA_N) to (8, MMA_M, MMA_N / 2)
- Tensor tensor = make_tensor(
- tensor_.data(), flash::convert_layout_acc_dropout(tensor_.layout()));
- using T = typename Engine::value_type;
- auto encode_dropout = [](bool keep, T val) {
- return keep ? val : (encode_dropout_in_sign_bit ? -val : T(0));
- };
- static_assert(decltype(size<2>(tensor))::value % 2 == 0);
- const uint16_t p_dropout_8bit_in_uint16_t = uint16_t(p_dropout_in_uint8_t);
- const uint32_t p_dropout_8bit_in_uint32_t =
- (uint32_t(p_dropout_8bit_in_uint16_t) << 16) |
- uint32_t(p_dropout_8bit_in_uint16_t);
- // if (cute::thread0()) { printf("threshold2 = 0x%x\n",
- // p_dropout_8bit_in_uint32_t); }
- #pragma unroll
- for (int m = 0; m < size<1>(tensor);
- ++m, block_row_start += block_row_stride) {
- uint2 rowcol = make_uint2(block_row_start, block_col_start);
- #pragma unroll
- for (int n = 0; n < size<2>(tensor) / 2; ++n, ++rowcol.y) {
- // if (cute::thread(32, 0)) { printf("m = %d, n = %d, row = %d, col =
- // %d\n", m, n, int(rowcol.x), int(rowcol.y));}
- uint4 random_uint4 = flash::philox(
- seed, reinterpret_cast<unsigned long long&>(rowcol), offset);
- // if (cute::thread0()) { printf("philox = %u, %d, %d, %d\n",
- // random_uint4.x, random_uint4.y, random_uint4.z, random_uint4.w);}
- uint8_t(&rnd_8)[16] = reinterpret_cast<uint8_t(&)[16]>(random_uint4);
- // Special implementation for 16-bit types: we duplicate the threshold
- // to the low and high 16 bits of a 32-bit value, then use the f16x2
- // comparison instruction to get a mask. The low 16 bits of the mask
- // will be either 0xffff or 0x0000, and the high 16 bits will be either
- // 0xffff or 0x0000, depending on whether the random value is less than
- // the threshold. We then do a bit-wise AND between the mask and the
- // original value (in 32-bit). We're exploiting the fact that floating
- // point comparison is equivalent to integer comparison, since we're
- // comparing unsigned integers whose top 8-bits are zero.
- if (!encode_dropout_in_sign_bit &&
- (std::is_same<T, cutlass::half_t>::value ||
- std::is_same<T, cutlass::bfloat16_t>::value)) {
- uint16_t rnd_16[16];
- #pragma unroll
- for (int i = 0; i < 16; i++) {
- rnd_16[i] = uint16_t(rnd_8[i]);
- }
- uint32_t(&rnd_32)[8] = reinterpret_cast<uint32_t(&)[8]>(rnd_16);
- #pragma unroll
- for (int j = 0; j < 2; j++) {
- Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
- // if (cute::thread0()) { printf("random = 0x%x, 0x%x, 0x%x, 0x%x\n", rnd_32[j *
- // 4 + 0], rnd_32[j * 4 + 1], rnd_32[j * 4 + 2], rnd_32[j * 4 + 3]); } if
- // (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n",
- // tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- uint32_t mask;
- asm volatile("set.le.u32.f16x2 %0, %1, %2;\n"
- : "=r"(mask)
- : "r"(rnd_32[j * 4 + i]),
- "r"(p_dropout_8bit_in_uint32_t));
- tensor_uint32(i) &= mask;
- }
- // if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x,
- // 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2),
- // tensor_uint32(3)); }
- }
- } else {
- #pragma unroll
- for (int j = 0; j < 2; j++) {
- #pragma unroll
- for (int i = 0; i < 8; i++) {
- tensor(i, m, n * 2 + j) =
- encode_dropout(rnd_8[j * 8 + i] <= p_dropout_in_uint8_t,
- tensor(i, m, n * 2 + j));
- }
- Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
- // if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x,
- // 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2),
- // tensor_uint32(3)); }
- }
- }
- // // if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0))
- // {
- // // printf("n = %d, ph Philox: %u, %u, %u, %u\n", n, rnd_8.x,
- // rnd_8.y, rnd_8.z, rnd_8.w);
- // // }
- }
- }
- }
- };
- } // namespace flash
|