xpu_model_runner.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. import dataclasses
  2. import weakref
  3. from dataclasses import dataclass
  4. from typing import (TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type,
  5. TypeVar)
  6. import torch
  7. import torch.nn as nn
  8. from loguru import logger
  9. from aphrodite.attention import get_attn_backend
  10. from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig,
  11. LoRAConfig, ModelConfig, ParallelConfig,
  12. PromptAdapterConfig, SchedulerConfig)
  13. from aphrodite.common.sampling_params import SamplingParams
  14. from aphrodite.common.sequence import (IntermediateTensors,
  15. SequenceGroupMetadata)
  16. from aphrodite.common.utils import DeviceMemoryProfiler, make_tensor_with_pad
  17. from aphrodite.distributed import get_pp_group
  18. from aphrodite.inputs import INPUT_REGISTRY, InputRegistry
  19. from aphrodite.modeling.layers.sampler import SamplerOutput
  20. from aphrodite.modeling.model_loader import get_model
  21. from aphrodite.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
  22. MultiModalInputs, MultiModalRegistry)
  23. from aphrodite.worker.model_runner import AttentionMetadata, SamplingMetadata
  24. from aphrodite.worker.model_runner_base import (
  25. ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
  26. _add_attn_metadata_broadcastable_dict,
  27. _add_sampling_metadata_broadcastable_dict,
  28. _init_attn_metadata_from_tensor_dict,
  29. _init_sampling_metadata_from_tensor_dict)
  30. if TYPE_CHECKING:
  31. from aphrodite.attention.backends.abstract import AttentionBackend
  32. _PAD_SLOT_ID = -1
  33. _BATCH_SIZE_ALIGNMENT = 8
  34. _BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
  35. _BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
  36. ]
  37. TModelInputForXPU = TypeVar('TModelInputForXPU', bound="ModelInputForXPU")
  38. @dataclass(frozen=True)
  39. class ModelInputForXPU(ModelRunnerInputBase):
  40. """
  41. Used by the NeuronModelRunner.
  42. """
  43. input_tokens: Optional[torch.Tensor] = None
  44. input_positions: Optional[torch.Tensor] = None
  45. attn_metadata: Optional["AttentionMetadata"] = None
  46. multi_modal_kwargs: Optional[BatchedTensorInputs] = None
  47. virtual_engine: Optional[int] = None
  48. seq_lens: Optional[List[int]] = None
  49. query_lens: Optional[List[int]] = None
  50. def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
  51. tensor_dict = {
  52. "input_tokens": self.input_tokens,
  53. "input_positions": self.input_positions,
  54. }
  55. _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
  56. return tensor_dict
  57. @classmethod
  58. def from_broadcasted_tensor_dict(
  59. cls: Type[TModelInputForXPU],
  60. tensor_dict: Dict[str, Any],
  61. attn_backend: Optional["AttentionBackend"] = None,
  62. ) -> TModelInputForXPU:
  63. if attn_backend is not None:
  64. tensor_dict = _init_attn_metadata_from_tensor_dict(
  65. attn_backend, tensor_dict)
  66. return cls(**tensor_dict)
  67. @dataclass(frozen=True)
  68. class ModelInputForXPUWithSamplingMetadata(ModelInputForXPU):
  69. """
  70. Used by the ModelRunner.
  71. """
  72. sampling_metadata: Optional["SamplingMetadata"] = None
  73. def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
  74. tensor_dict = {
  75. "input_tokens": self.input_tokens,
  76. "input_positions": self.input_positions,
  77. }
  78. _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
  79. _add_sampling_metadata_broadcastable_dict(tensor_dict,
  80. self.sampling_metadata)
  81. return tensor_dict
  82. @classmethod
  83. def from_broadcasted_tensor_dict(
  84. cls,
  85. tensor_dict: Dict[str, Any],
  86. attn_backend: Optional["AttentionBackend"] = None,
  87. ) -> "ModelInputForXPUWithSamplingMetadata":
  88. tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
  89. if attn_backend is not None:
  90. tensor_dict = _init_attn_metadata_from_tensor_dict(
  91. attn_backend, tensor_dict)
  92. return cls(**tensor_dict)
  93. class ModelInputForXPUBuilder(ModelRunnerInputBuilderBase[ModelInputForXPU]):
  94. def __init__(self,
  95. runner: "XPUModelRunner",
  96. finished_requests_ids: Optional[List[str]] = None) -> None:
  97. super().__init__()
  98. self.seq_group_metadata_list: List[SequenceGroupMetadata] = []
  99. self.runner = runner
  100. self.model_input_cls = self.runner._model_input_cls
  101. self.attn_backend = self.runner.attn_backend
  102. self.sliding_window = self.runner.sliding_window
  103. self.block_size = self.runner.block_size
  104. self.device = self.runner.device
  105. def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
  106. self.seq_group_metadata_list.append(seq_group_metadata)
  107. def build(self) -> ModelInputForXPU:
  108. is_prompt = self.seq_group_metadata_list[0].is_prompt
  109. # Prepare input tensors.
  110. if is_prompt:
  111. (input_tokens, input_positions, attn_metadata, seq_lens,
  112. multi_modal_kwargs) = self._prepare_prompt(
  113. self.seq_group_metadata_list)
  114. else:
  115. (input_tokens, input_positions,
  116. attn_metadata) = self._prepare_decode(
  117. self.seq_group_metadata_list)
  118. seq_lens = []
  119. multi_modal_kwargs = None
  120. return self.model_input_cls(
  121. input_tokens=input_tokens,
  122. input_positions=input_positions,
  123. attn_metadata=attn_metadata,
  124. multi_modal_kwargs=multi_modal_kwargs,
  125. seq_lens=seq_lens,
  126. query_lens=seq_lens,
  127. )
  128. def _prepare_prompt(
  129. self,
  130. seq_group_metadata_list: List[SequenceGroupMetadata],
  131. ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int],
  132. BatchedTensorInputs]:
  133. assert len(seq_group_metadata_list) > 0
  134. input_tokens: List[int] = []
  135. input_positions: List[int] = []
  136. slot_mapping: List[int] = []
  137. seq_lens: List[int] = []
  138. multi_modal_inputs_list: List[MultiModalInputs] = []
  139. for seq_group_metadata in seq_group_metadata_list:
  140. assert seq_group_metadata.is_prompt
  141. seq_ids = list(seq_group_metadata.seq_data.keys())
  142. assert len(seq_ids) == 1
  143. seq_id = seq_ids[0]
  144. seq_data = seq_group_metadata.seq_data[seq_id]
  145. prompt_tokens = seq_data.get_token_ids()
  146. computed_len = seq_data.get_num_computed_tokens()
  147. seq_len = len(prompt_tokens)
  148. seq_lens.append(seq_len) # Prompt token num
  149. input_tokens.extend(prompt_tokens) # Token ids
  150. # Token position ids
  151. # NOTE(woosuk): Here we assume that the first token in the prompt
  152. # is always the first token in the sequence.
  153. input_positions.extend(list(range(computed_len, seq_len)))
  154. if seq_group_metadata.block_tables is None:
  155. # During memory profiling, the block tables are not initialized
  156. # yet. In this case, we just use a dummy slot mapping.
  157. slot_mapping.extend([_PAD_SLOT_ID] * seq_len)
  158. continue
  159. # Compute the slot mapping.
  160. block_table = seq_group_metadata.block_tables[seq_id]
  161. # Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
  162. # where start_idx is max(0, seq_len - sliding_window).
  163. # For example, if the prompt len is 10, sliding window is 8, and
  164. # block size is 4, the first two tokens are masked and the slot
  165. # mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
  166. start_idx = 0
  167. if self.sliding_window is not None:
  168. start_idx = max(0, seq_len - self.sliding_window)
  169. for i in range(computed_len, seq_len):
  170. if i < start_idx:
  171. slot_mapping.append(_PAD_SLOT_ID)
  172. continue
  173. block_number = block_table[i //
  174. self.block_size] # type: ignore
  175. block_offset = i % self.block_size # type: ignore
  176. slot = block_number * self.block_size + block_offset
  177. slot_mapping.append(slot)
  178. num_prompt_tokens = len(input_tokens)
  179. input_tokens = torch.tensor(input_tokens,
  180. dtype=torch.long,
  181. device=self.device) # type: ignore
  182. input_positions = torch.tensor(input_positions,
  183. dtype=torch.long,
  184. device=self.device) # type: ignore
  185. slot_mapping = torch.tensor(slot_mapping,
  186. dtype=torch.long,
  187. device=self.device) # type: ignore
  188. max_seqlen = max(seq_lens)
  189. tmp = [0]
  190. tmp.extend(seq_lens)
  191. seqlen = torch.tensor(tmp)
  192. seqlen_q = torch.cumsum(seqlen, dim=0).to(device=self.device)
  193. attn_metadata = self.attn_backend.make_metadata(
  194. is_prompt=True,
  195. slot_mapping=slot_mapping,
  196. seq_lens=seq_lens,
  197. seqlen_q=seqlen_q,
  198. max_seqlen=max_seqlen,
  199. seq_lens_tensor=torch.tensor([]),
  200. max_decode_seq_len=0,
  201. num_prefills=len(seq_lens),
  202. num_prefill_tokens=num_prompt_tokens,
  203. num_decode_tokens=0,
  204. block_tables=torch.tensor([], device=self.device, dtype=torch.int),
  205. )
  206. multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list)
  207. return (input_tokens, input_positions, attn_metadata, seq_lens,
  208. multi_modal_kwargs)
  209. def _prepare_decode(
  210. self,
  211. seq_group_metadata_list: List[SequenceGroupMetadata],
  212. ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
  213. assert len(seq_group_metadata_list) > 0
  214. input_tokens: List[int] = []
  215. input_positions: List[int] = []
  216. slot_mapping: List[int] = []
  217. seq_lens: List[int] = []
  218. block_tables: List[List[int]] = []
  219. for seq_group_metadata in seq_group_metadata_list:
  220. assert not seq_group_metadata.is_prompt
  221. assert seq_group_metadata.token_chunk_size == 1
  222. seq_ids = list(seq_group_metadata.seq_data.keys())
  223. for seq_id in seq_ids:
  224. seq_data = seq_group_metadata.seq_data[seq_id]
  225. generation_token = seq_data.get_last_token_id()
  226. input_tokens.append(generation_token)
  227. seq_len = seq_data.get_len()
  228. position = seq_len - 1
  229. input_positions.append(position)
  230. seq_len = seq_len if self.sliding_window is None else min(
  231. seq_len, self.sliding_window)
  232. seq_lens.append(seq_len)
  233. block_table = seq_group_metadata.block_tables[seq_id]
  234. block_number = block_table[position // self.block_size]
  235. block_offset = position % self.block_size
  236. slot = block_number * self.block_size + block_offset
  237. slot_mapping.append(slot)
  238. if self.sliding_window is not None:
  239. sliding_window_blocks = (self.sliding_window //
  240. self.block_size)
  241. block_table = block_table[-sliding_window_blocks:]
  242. block_tables.append(block_table)
  243. max_decode_seq_len = max(seq_lens)
  244. input_tokens = torch.tensor(input_tokens,
  245. dtype=torch.long,
  246. device=self.device)
  247. input_positions = torch.tensor(input_positions,
  248. dtype=torch.long,
  249. device=self.device)
  250. slot_mapping = torch.tensor(slot_mapping,
  251. dtype=torch.long,
  252. device=self.device)
  253. seq_lens_tensor = torch.tensor(seq_lens,
  254. dtype=torch.int,
  255. device=self.device)
  256. block_tables = make_tensor_with_pad(
  257. block_tables,
  258. pad=0,
  259. dtype=torch.int,
  260. device=self.device,
  261. )
  262. attn_metadata = self.attn_backend.make_metadata(
  263. is_prompt=False,
  264. slot_mapping=slot_mapping,
  265. seq_lens=seq_lens,
  266. seqlen_q=torch.tensor([]),
  267. max_seqlen=0,
  268. seq_lens_tensor=seq_lens_tensor,
  269. max_decode_seq_len=max_decode_seq_len,
  270. num_prefill_tokens=0,
  271. num_decode_tokens=len(input_tokens),
  272. num_prefills=0,
  273. block_tables=block_tables,
  274. )
  275. return (
  276. input_tokens,
  277. input_positions,
  278. attn_metadata,
  279. )
  280. class XPUModelRunner(ModelRunnerBase[ModelInputForXPUWithSamplingMetadata]):
  281. _model_input_cls: Type[ModelInputForXPUWithSamplingMetadata] = (
  282. ModelInputForXPUWithSamplingMetadata)
  283. _builder_cls: Type[ModelInputForXPUBuilder] = ModelInputForXPUBuilder
  284. def __init__(
  285. self,
  286. model_config: ModelConfig,
  287. parallel_config: ParallelConfig,
  288. scheduler_config: SchedulerConfig,
  289. device_config: DeviceConfig,
  290. cache_config: CacheConfig,
  291. load_config: LoadConfig,
  292. lora_config: Optional[LoRAConfig],
  293. kv_cache_dtype: Optional[str] = "auto",
  294. is_driver_worker: bool = False,
  295. prompt_adapter_config: Optional[PromptAdapterConfig] = None,
  296. return_hidden_states: bool = False,
  297. input_registry: InputRegistry = INPUT_REGISTRY,
  298. mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
  299. ):
  300. self.model_config = model_config
  301. self.parallel_config = parallel_config
  302. self.scheduler_config = scheduler_config
  303. self.device_config = device_config
  304. self.cache_config = cache_config
  305. self.lora_config = lora_config
  306. self.load_config = load_config
  307. self.is_driver_worker = is_driver_worker
  308. self.prompt_adapter_config = prompt_adapter_config
  309. self.return_hidden_states = return_hidden_states
  310. self.device = self.device_config.device
  311. self.kv_cache_dtype = kv_cache_dtype
  312. self.sliding_window = model_config.get_sliding_window()
  313. self.block_size = cache_config.block_size
  314. self.max_context_len_to_capture = (
  315. self.model_config.max_context_len_to_capture
  316. if self.model_config is not None else 0)
  317. self.attn_backend = get_attn_backend(
  318. self.model_config.get_head_size(),
  319. self.model_config.get_sliding_window(),
  320. self.model_config.dtype,
  321. self.kv_cache_dtype,
  322. self.block_size,
  323. model_config.is_attention_free(),
  324. )
  325. # Multi-modal data support
  326. self.input_registry = input_registry
  327. self.mm_registry = mm_registry
  328. self.multi_modal_input_mapper = mm_registry \
  329. .create_input_mapper(model_config)
  330. self.mm_registry.init_mm_limits_per_prompt(self.model_config)
  331. # Lazy initialization.
  332. self.model: nn.Module # Set after init_Model
  333. def load_model(self) -> None:
  334. with DeviceMemoryProfiler() as m:
  335. self.model = get_model(
  336. model_config=self.model_config,
  337. device_config=self.device_config,
  338. load_config=self.load_config,
  339. lora_config=self.lora_config,
  340. parallel_config=self.parallel_config,
  341. scheduler_config=self.scheduler_config,
  342. cache_config=self.cache_config,
  343. )
  344. self.model_memory_usage = m.consumed_memory
  345. logger.info("Loading model weights took "
  346. f"{self.model_memory_usage / float(2**30):.4f} GB")
  347. @property
  348. def vocab_size(self) -> int:
  349. return self.model_config.get_vocab_size()
  350. @torch.inference_mode()
  351. def profile_run(self) -> None:
  352. # Enable top-k sampling to reflect the accurate memory usage.
  353. sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
  354. max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
  355. max_num_seqs = self.scheduler_config.max_num_seqs
  356. # Profile memory usage with max_num_sequences sequences and the total
  357. # number of tokens equal to max_num_batched_tokens.
  358. seqs: List[SequenceGroupMetadata] = []
  359. # Additional GPU memory may be needed for multi-modal encoding, which
  360. # needs to be accounted for when calculating the GPU blocks for
  361. # Aphrodite blocker manager.
  362. # To exercise the worst scenario for GPU memory consumption,
  363. # the number of seqs (batch_size) is chosen to maximize the number
  364. # of images processed.
  365. max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
  366. self.model_config)
  367. if max_mm_tokens > 0:
  368. max_num_seqs_orig = max_num_seqs
  369. max_num_seqs = min(max_num_seqs,
  370. max_num_batched_tokens // max_mm_tokens)
  371. if max_num_seqs < 1:
  372. expr = (f"min({max_num_seqs_orig}, "
  373. f"{max_num_batched_tokens} // {max_mm_tokens})")
  374. logger.warning(
  375. f"Computed max_num_seqs ({expr}) to be less than 1. "
  376. "Setting it to the minimum value of 1.")
  377. max_num_seqs = 1
  378. batch_size = 0
  379. for group_id in range(max_num_seqs):
  380. seq_len = (max_num_batched_tokens // max_num_seqs +
  381. (group_id < max_num_batched_tokens % max_num_seqs))
  382. batch_size += seq_len
  383. seq_data, dummy_multi_modal_data = self.input_registry \
  384. .dummy_data_for_profiling(self.model_config,
  385. seq_len,
  386. self.mm_registry)
  387. seq = SequenceGroupMetadata(
  388. request_id=str(group_id),
  389. is_prompt=True,
  390. seq_data={group_id: seq_data},
  391. sampling_params=sampling_params,
  392. block_tables=None,
  393. lora_request=None,
  394. multi_modal_data=dummy_multi_modal_data,
  395. )
  396. seqs.append(seq)
  397. # Run the model with the dummy inputs.
  398. num_layers = self.model_config.get_num_layers(self.parallel_config)
  399. kv_caches = [None] * num_layers
  400. finished_requests_ids = [seq.request_id for seq in seqs]
  401. model_input = self.prepare_model_input(
  402. seqs, finished_requests_ids=finished_requests_ids)
  403. intermediate_tensors = None
  404. if not get_pp_group().is_first_rank:
  405. intermediate_tensors = self.model.make_empty_intermediate_tensors(
  406. batch_size=batch_size,
  407. dtype=self.model_config.dtype,
  408. device=self.device)
  409. self.execute_model(model_input, kv_caches, intermediate_tensors)
  410. torch.xpu.synchronize()
  411. return
  412. def make_model_input_from_broadcasted_tensor_dict(
  413. self,
  414. tensor_dict: Dict[str,
  415. Any]) -> ModelInputForXPUWithSamplingMetadata:
  416. return (
  417. ModelInputForXPUWithSamplingMetadata.from_broadcasted_tensor_dict(
  418. tensor_dict,
  419. attn_backend=self.attn_backend,
  420. ))
  421. def _prepare_model_input_tensors(
  422. self,
  423. seq_group_metadata_list: List[SequenceGroupMetadata],
  424. finished_requests_ids: Optional[List[str]] = None
  425. ) -> ModelInputForXPUWithSamplingMetadata:
  426. """Helper method to prepare the model input based on a given sequence
  427. group. Prepares metadata needed for the base model forward pass but not
  428. metadata for possible additional steps, e.g., sampling.
  429. """
  430. builder = self._builder_cls(weakref.proxy(self), finished_requests_ids)
  431. for seq_group_metadata in seq_group_metadata_list:
  432. builder.add_seq_group(seq_group_metadata)
  433. return builder.build() # type: ignore
  434. def prepare_model_input(
  435. self,
  436. seq_group_metadata_list: List[SequenceGroupMetadata],
  437. virtual_engine: int = 0,
  438. finished_requests_ids: Optional[List[str]] = None
  439. ) -> ModelInputForXPUWithSamplingMetadata:
  440. """Prepare the model input based on a given sequence group, including
  441. metadata for the sampling step.
  442. """
  443. model_input = self._prepare_model_input_tensors(
  444. seq_group_metadata_list, finished_requests_ids)
  445. # Sampling metadata is only required for the final pp group
  446. generators = self.get_generators(finished_requests_ids)
  447. sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
  448. model_input.seq_lens,
  449. model_input.query_lens,
  450. self.device,
  451. pin_memory=False,
  452. generators=generators)
  453. return dataclasses.replace(model_input,
  454. sampling_metadata=sampling_metadata,
  455. virtual_engine=virtual_engine)
  456. @torch.inference_mode()
  457. def execute_model(
  458. self,
  459. model_input: ModelInputForXPUWithSamplingMetadata,
  460. kv_caches: List[torch.Tensor],
  461. intermediate_tensors: Optional[IntermediateTensors] = None,
  462. num_steps: int = 1,
  463. ) -> Optional[List[SamplerOutput]]:
  464. if num_steps > 1:
  465. raise ValueError(
  466. "XPUModelRunner does not support multi-step execution.")
  467. model_executable = self.model
  468. hidden_or_intermediate_states = model_executable(
  469. input_ids=model_input.input_tokens,
  470. positions=model_input.input_positions,
  471. kv_caches=kv_caches,
  472. attn_metadata=model_input.attn_metadata,
  473. intermediate_tensors=intermediate_tensors,
  474. **MultiModalInputs.as_kwargs(model_input.multi_modal_kwargs or {},
  475. device=self.device))
  476. # Compute the logits in the last pipeline stage.
  477. if not get_pp_group().is_last_rank:
  478. return hidden_or_intermediate_states
  479. # Compute the logits.
  480. logits = self.model.compute_logits(hidden_or_intermediate_states,
  481. model_input.sampling_metadata)
  482. # Only perform sampling in the driver worker.
  483. if not self.is_driver_worker:
  484. return []
  485. # Sample the next token.
  486. output: SamplerOutput = self.model.sample(
  487. logits=logits,
  488. sampling_metadata=model_input.sampling_metadata,
  489. )
  490. return [output]