123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- import enum
- import os
- import socket
- import subprocess
- import uuid
- import gc
- from platform import uname
- from loguru import logger
- import psutil
- import torch
- import asyncio
- from functools import partial
- from typing import (Any, Awaitable, Callable, Hashable, Optional, TypeVar,
- List, Tuple, Union)
- from collections import OrderedDict
- from packaging.version import parse, Version
- T = TypeVar("T")
- STR_DTYPE_TO_TORCH_DTYPE = {
- "half": torch.half,
- "bfloat16": torch.bfloat16,
- "float": torch.float,
- "fp8_e5m2": torch.uint8,
- "int8": torch.int8,
- }
- class Device(enum.Enum):
- GPU = enum.auto()
- CPU = enum.auto()
- class Counter:
- def __init__(self, start: int = 0) -> None:
- self.counter = start
- def __next__(self) -> int:
- i = self.counter
- self.counter += 1
- return i
- def reset(self) -> None:
- self.counter = 0
- class LRUCache:
- def __init__(self, capacity: int):
- self.cache = OrderedDict()
- self.capacity = capacity
- def __contains__(self, key: Hashable) -> bool:
- return key in self.cache
- def __len__(self) -> int:
- return len(self.cache)
- def __getitem__(self, key: Hashable) -> Any:
- return self.get(key)
- def __setitem__(self, key: Hashable, value: Any) -> None:
- self.put(key, value)
- def __delitem__(self, key: Hashable) -> None:
- self.pop(key)
- def touch(self, key: Hashable) -> None:
- self.cache.move_to_end(key)
- def get(self, key: Hashable, default_value: Optional[Any] = None) -> int:
- if key in self.cache:
- value = self.cache[key]
- self.cache.move_to_end(key)
- else:
- value = default_value
- return value
- def put(self, key: Hashable, value: Any) -> None:
- self.cache[key] = value
- self.cache.move_to_end(key)
- self._remove_old_if_needed()
- def _on_remove(self, key: Hashable, value: Any):
- pass
- def remove_oldest(self):
- if not self.cache:
- return
- key, value = self.cache.popitem(last=False)
- self._on_remove(key, value)
- def _remove_old_if_needed(self) -> None:
- while len(self.cache) > self.capacity:
- self.remove_oldest()
- def pop(self, key: int, default_value: Optional[Any] = None) -> Any:
- run_on_remove = key in self.cache
- value = self.cache.pop(key, default_value)
- if run_on_remove:
- self._on_remove(key, value)
- return value
- def clear(self):
- while len(self.cache) > 0:
- self.remove_oldest()
- self.cache.clear()
- def is_hip() -> bool:
- return torch.version.hip is not None
- def get_max_shared_memory_bytes(gpu: int = 0) -> int:
- """Returns the maximum shared memory per thread block in bytes."""
- from aphrodite._C import cuda_utils
- # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
- max_shared_mem = (
- cuda_utils.get_max_shared_memory_per_block_device_attribute(gpu))
- assert max_shared_mem > 0, "max_shared_mem can not be zero"
- return int(max_shared_mem)
- def get_cpu_memory() -> int:
- """Returns the total CPU memory of the node in bytes."""
- return psutil.virtual_memory().total
- def random_uuid() -> str:
- return str(uuid.uuid4().hex)
- def in_wsl() -> bool:
- # Reference: https://github.com/microsoft/WSL/issues/4071
- return "microsoft" in " ".join(uname()).lower()
- def make_async(func: Callable[..., T]) -> Callable[..., Awaitable[T]]:
- """Take a blocking function, and run it on in an executor thread.
- This function prevents the blocking function from blocking the
- asyncio event loop.
- The code in this function needs to be thread safe.
- """
- def _async_wrapper(*args, **kwargs) -> asyncio.Future:
- loop = asyncio.get_event_loop()
- p_func = partial(func, *args, **kwargs)
- return loop.run_in_executor(executor=None, func=p_func)
- return _async_wrapper
- def get_ip() -> str:
- s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
- s.connect(("8.8.8.8", 80)) # Doesn't need to be reachable
- return s.getsockname()[0]
- def get_open_port() -> int:
- with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
- s.bind(("", 0))
- return s.getsockname()[1]
- def set_cuda_visible_devices(device_ids: List[int]) -> None:
- os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, device_ids))
- def get_nvcc_cuda_version() -> Optional[Version]:
- cuda_home = os.environ.get('CUDA_HOME')
- nvcc_path = os.path.join(cuda_home, 'bin', 'nvcc') if cuda_home else 'nvcc'
- try:
- nvcc_output = subprocess.check_output([nvcc_path, "-V"],
- universal_newlines=True)
- output = nvcc_output.split()
- release_idx = output.index("release") + 1
- nvcc_cuda_version = parse(output[release_idx].split(",")[0])
- return nvcc_cuda_version
- except (FileNotFoundError, subprocess.CalledProcessError):
- logger.warning("nvcc not found. Skipping CUDA version check!")
- return None
- def _generate_random_fp8_e5m2(
- tensor: torch.tensor,
- low: float,
- high: float,
- ) -> None:
- # NOTE: Due to NaN and Inf representation for fp8 data type,
- # we may get Inf or NaN if we directly use torch.randint
- # to generate random data for fp8 data.
- # For example, s.11111.00 in fp8e5m2 format represents Inf.
- # | E4M3 | E5M2
- #-----|-------------|-------------------
- # Inf | N/A | s.11111.00
- # NaN | s.1111.111 | s.11111.{01,10,11}
- from aphrodite._C import cache_ops
- tensor_tmp = torch.empty_like(tensor, dtype=torch.float16)
- tensor_tmp.uniform_(low, high)
- cache_ops.convert_fp8_e5m2(tensor_tmp, tensor)
- del tensor_tmp
- def create_kv_caches_with_random(
- num_blocks: int,
- block_size: int,
- num_layers: int,
- num_heads: int,
- head_size: int,
- cache_dtype: Optional[Union[str, torch.dtype]],
- model_dtype: Optional[Union[str, torch.dtype]] = None,
- seed: Optional[int] = 0,
- device: Optional[str] = "cuda",
- ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
- torch.random.manual_seed(seed)
- if torch.cuda.is_available():
- torch.cuda.manual_seed(seed)
- if isinstance(cache_dtype, str):
- if cache_dtype == "auto":
- if isinstance(model_dtype, str):
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
- elif isinstance(model_dtype, torch.dtype):
- torch_dtype = model_dtype
- else:
- raise ValueError(f"Invalid model dtype: {model_dtype}")
- elif cache_dtype in ["half", "bfloat16", "float"]:
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_dtype]
- elif cache_dtype == "fp8_e5m2":
- torch_dtype = torch.uint8
- else:
- raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
- elif isinstance(cache_dtype, torch.dtype):
- torch_dtype = cache_dtype
- else:
- raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
- scale = head_size**-0.5
- x = 16 // torch.tensor([], dtype=torch_dtype).element_size()
- key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
- key_caches = []
- for _ in range(num_layers):
- key_cache = torch.empty(size=key_cache_shape,
- dtype=torch_dtype,
- device=device)
- if cache_dtype == 'fp8_e5m2':
- _generate_random_fp8_e5m2(key_cache, -scale, scale)
- elif cache_dtype == 'int8':
- torch.randint(-128, 127, key_cache.size(), out=key_cache)
- elif torch_dtype in [torch.half, torch.bfloat16, torch.float]:
- key_cache.uniform_(-scale, scale)
- else:
- raise ValueError(
- f"Does not support key cache of type {cache_dtype}")
- key_caches.append(key_cache)
- value_cache_shape = (num_blocks, num_heads, head_size, block_size)
- value_caches = []
- for _ in range(num_layers):
- value_cache = torch.empty(size=value_cache_shape,
- dtype=torch_dtype,
- device=device)
- if cache_dtype == 'fp8_e5m2':
- _generate_random_fp8_e5m2(value_cache, -scale, scale)
- elif cache_dtype == 'int8':
- torch.randint(-128, 127, value_cache.size(), out=value_cache)
- elif torch_dtype in [torch.half, torch.bfloat16, torch.float]:
- value_cache.uniform_(-scale, scale)
- else:
- raise ValueError(
- f"Does not support value cache of type {cache_dtype}")
- value_caches.append(value_cache)
- return key_caches, value_caches
- class measure_cuda_memory:
- def __init__(self, device=None):
- self.device = device
- def current_memory_usage(self) -> float:
- # Return the memory usage in bytes.
- torch.cuda.reset_peak_memory_stats(self.device)
- mem = torch.cuda.max_memory_allocated(self.device)
- return mem
- def __enter__(self):
- self.initial_memory = self.current_memory_usage()
- # This allows us to call methods of the context manager if needed
- return self
- def __exit__(self, exc_type, exc_val, exc_tb):
- self.final_memory = self.current_memory_usage()
- self.consumed_memory = self.final_memory - self.initial_memory
- # Force garbage collection
- gc.collect()
|