1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- from typing import Any, Dict, List
- import torch
- from aphrodite.modeling.quantization_utils.base import QuantizationConfig
- class AWQConfig(QuantizationConfig):
- """Config class for AWQ.
- Reference: https://arxiv.org/abs/2306.00978
- """
- def __init__(
- self,
- weight_bits: int,
- group_size: int,
- zero_point: bool,
- ) -> None:
- self.weight_bits = weight_bits
- self.group_size = group_size
- self.zero_point = zero_point
- if self.weight_bits != 4:
- raise ValueError(
- "Currently, only 4-bit weight quantization is supported for "
- f"AWQ, but got {self.weight_bits} bits.")
- self.pack_factor = 32 // self.weight_bits
- def __repr__(self) -> str:
- return (f"AWQConfig(weight_bits={self.weight_bits}, "
- f"group_size={self.group_size}, "
- f"zero_point={self.zero_point})")
- @classmethod
- def get_name(cls) -> str:
- return "awq"
- @classmethod
- def get_supported_act_dtypes(cls) -> List[torch.dtype]:
- return [torch.half]
- @classmethod
- def get_min_capability(cls) -> int:
- # The AWQ kernel only supports Turing or newer GPUs.
- return 75
- @classmethod
- def get_config_filenames(cls) -> List[str]:
- return [
- "quant_config.json", # E.g., casperhansen/vicuna-7b-v1.5-awq
- "quantize_config.json", # E.g., abhinavkulkarni/mosaicml-mpt-7b-instruct-w4-g128-awq # pylint: disable=line-too-long
- ]
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "AWQConfig":
- weight_bits = cls.get_from_keys(config, ["w_bit", "bits"])
- group_size = cls.get_from_keys(config, ["q_group_size", "group_size"])
- zero_point = cls.get_from_keys(config, ["zero_point"])
- return cls(weight_bits, group_size, zero_point)
- @classmethod
- def get_packed_tensor_names(cls) -> List[str]:
- return ["qweight", "qzeros"]
- @classmethod
- def get_transposed_tensor_names(cls) -> List[str]:
- return ["qweight", "qzeros", "scales"]
- def get_row_tp_tensor_names(self) -> List[str]:
- return ["qweight", "qzeros", "scales"]
- def get_column_tp_tensor_names(self) -> List[str]:
- return ["qweight", "qzeros", "scales", "bias"]
|