123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- # coding=utf-8
- # Copied from
- # https://huggingface.co/mosaicml/mpt-7b/blob/main/configuration_mpt.py
- """A HuggingFace-style model configuration."""
- import warnings
- from typing import Any, Dict, Optional, Union
- from transformers import PretrainedConfig
- attn_config_defaults: Dict = {
- "attn_type": "multihead_attention",
- "attn_pdrop": 0.0,
- "attn_impl": "triton",
- "qk_ln": False,
- "clip_qkv": None,
- "softmax_scale": None,
- "prefix_lm": False,
- "attn_uses_sequence_id": False,
- "alibi": False,
- "alibi_bias_max": 8,
- }
- ffn_config_defaults: Dict = {"ffn_type": "mptmlp"}
- init_config_defaults: Dict = {
- "name": "kaiming_normal_",
- "fan_mode": "fan_in",
- "init_nonlinearity": "relu",
- "init_div_is_residual": True,
- "emb_init_std": None,
- "emb_init_uniform_lim": None,
- "init_std": None,
- "init_gain": 0.0,
- }
- class MPTConfig(PretrainedConfig):
- model_type = "mpt"
- attribute_map = {
- "num_attention_heads": "n_heads",
- "hidden_size": "d_model",
- "num_hidden_layers": "n_layers",
- }
- # pylint: disable=dangerous-default-value
- def __init__(
- self,
- d_model: int = 2048,
- n_heads: int = 16,
- n_layers: int = 24,
- expansion_ratio: int = 4,
- max_seq_len: int = 2048,
- vocab_size: int = 50368,
- resid_pdrop: float = 0.0,
- emb_pdrop: float = 0.0,
- learned_pos_emb: bool = True,
- attn_config: Dict = attn_config_defaults,
- ffn_config: Dict = ffn_config_defaults,
- init_device: str = "cpu",
- logit_scale: Optional[Union[float, str]] = None,
- no_bias: bool = False,
- embedding_fraction: float = 1.0,
- norm_type: str = "low_precision_layernorm",
- use_cache: bool = False,
- init_config: Dict = init_config_defaults,
- fc_type: str = "torch",
- verbose: Optional[int] = None,
- **kwargs: Any,
- ):
- self.d_model = d_model
- self.n_heads = n_heads
- self.n_layers = n_layers
- self.expansion_ratio = expansion_ratio
- self.max_seq_len = max_seq_len
- self.vocab_size = vocab_size
- self.resid_pdrop = resid_pdrop
- self.emb_pdrop = emb_pdrop
- self.learned_pos_emb = learned_pos_emb
- self.attn_config = attn_config
- self.ffn_config = ffn_config
- self.init_device = init_device
- self.logit_scale = logit_scale
- self.no_bias = no_bias
- self.embedding_fraction = embedding_fraction
- self.norm_type = norm_type
- self.use_cache = use_cache
- self.init_config = init_config
- self.fc_type = fc_type
- if verbose is not None:
- warnings.warn(
- DeprecationWarning(
- "verbose argument for MPTConfig is now ignored and will be"
- " removed. Use python_log_level instead."),
- stacklevel=2,
- )
- if "name" in kwargs:
- del kwargs["name"]
- if "loss_fn" in kwargs:
- del kwargs["loss_fn"]
- if self.attn_config.get("alibi", False):
- self.learned_pos_emb = False
- warnings.warn(
- "alibi is turned on, setting `learned_pos_emb` to "
- f"{self.learned_pos_emb}`",
- stacklevel=2,
- )
- super().__init__(**kwargs)
- self._validate_config()
- def _set_config_defaults(
- self, config: Dict[str, Any],
- config_defaults: Dict[str, Any]) -> Dict[str, Any]:
- for k, v in config_defaults.items():
- if k not in config:
- config[k] = v
- return config
- def _validate_config(self) -> None:
- self.attn_config = self._set_config_defaults(self.attn_config,
- attn_config_defaults)
- self.ffn_config = self._set_config_defaults(self.ffn_config,
- ffn_config_defaults)
- self.init_config = self._set_config_defaults(self.init_config,
- init_config_defaults)
- if self.d_model % self.n_heads != 0:
- raise ValueError("d_model must be divisible by n_heads")
- if any((prob < 0 or prob > 1 for prob in [
- self.attn_config["attn_pdrop"],
- self.resid_pdrop,
- self.emb_pdrop,
- ])):
- raise ValueError(
- "self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop "
- "are probabilities and must be between 0 and 1")
- if self.attn_config["attn_impl"] not in ["torch", "flash", "triton"]:
- raise ValueError(
- f"Unknown attn_impl={self.attn_config['attn_impl']}")
- if self.attn_config["prefix_lm"] and self.attn_config[
- "attn_impl"] not in ["torch", "triton"]:
- raise NotImplementedError(
- "prefix_lm only implemented with torch and triton attention.")
- if self.attn_config["alibi"] and self.attn_config["attn_impl"] not in [
- "torch",
- "triton",
- ]:
- raise NotImplementedError(
- "alibi only implemented with torch and triton attention.")
- if self.attn_config["attn_uses_sequence_id"] and self.attn_config[
- "attn_impl"] not in ["torch", "triton"]:
- raise NotImplementedError(
- "attn_uses_sequence_id only implemented with torch and triton "
- "attention.")
- if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
- raise ValueError(
- "model.embedding_fraction must be between 0 (exclusive) and 1 "
- "(inclusive)!")
- if (isinstance(self.logit_scale, str)
- and self.logit_scale != "inv_sqrt_d_model"):
- raise ValueError(
- f"self.logit_scale={self.logit_scale!r} is not recognized as "
- "an option; use numeric value or 'inv_sqrt_d_model'.")
- if self.init_config.get("name", None) is None:
- raise ValueError(
- f"self.init_config={self.init_config!r} 'name' needs to be set."
- )
- if not self.learned_pos_emb and (not self.attn_config["alibi"]):
- warnings.warn(
- "Positional information not being provided to the model.",
- stacklevel=2,
- )
- if self.fc_type == "te" or self.ffn_config[ # codespell:ignore
- "ffn_type"] == "te_ln_mlp":
- try:
- # pylint: disable=import-outside-toplevel
- import transformer_engine.pytorch as te
- del te
- except Exception as exc:
- raise ImportError(
- # pylint: disable=line-too-long
- "TransformerEngine import fail. `fc_type: te` requires "
- "TransformerEngine be installed. " +
- "The required version of transformer_engine also "
- "requires FlashAttention v1.0.6 is installed:\n" +
- "pip install flash-attn==1.0.6 --no-build-isolation \n" +
- "pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156"
- ) from exc
- if self.ffn_config["ffn_type"] == "mptmlp":
- self.ffn_config["fc_type"] = self.fc_type
- elif self.ffn_config["ffn_type"] == "te_ln_mlp":
- self.ffn_config["bias"] = not self.no_bias
|