123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- """ Attention layer with torch scaled_dot_product_attention
- and PagedAttention."""
- from dataclasses import dataclass
- from typing import Dict, List, Optional, Tuple, Type
- import torch
- from torch.nn.functional import scaled_dot_product_attention
- from aphrodite.attention.backends.abstract import (
- AttentionBackend,
- AttentionImpl,
- AttentionMetadata,
- AttentionMetadataPerStage,
- )
- from aphrodite.attention.ops.paged_attn import (
- PagedAttention,
- PagedAttentionMetadata,
- )
- class TorchSDPABackend(AttentionBackend):
- @staticmethod
- def get_impl_cls() -> Type["TorchSDPABackendImpl"]:
- return TorchSDPABackendImpl
- @staticmethod
- def make_metadata(*args, **kwargs) -> "TorchSDPAMetadata":
- return TorchSDPAMetadata(*args, **kwargs)
- @staticmethod
- def get_kv_cache_shape(
- num_blocks: int,
- block_size: int,
- num_kv_heads: int,
- head_size: int,
- ) -> Tuple[int, ...]:
- return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
- num_kv_heads, head_size)
- @staticmethod
- def swap_blocks(
- src_kv_cache: torch.Tensor,
- dst_kv_cache: torch.Tensor,
- src_to_dst: Dict[int, int],
- ) -> None:
- PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
- @staticmethod
- def copy_blocks(
- kv_caches: List[torch.Tensor],
- src_to_dists: Dict[int, List[int]],
- ) -> None:
- PagedAttention.copy_blocks(kv_caches, src_to_dists)
- @dataclass
- class TorchSDPAMetadata(AttentionMetadata, PagedAttentionMetadata,
- AttentionMetadataPerStage):
- """Metadata for TorchSDPABackend.
- """
- # Currently, input sequences can only contain all prompts
- # or all decoding. True if all sequences are prompts.
- is_prompt: bool
- slot_mapping: torch.Tensor
- prompt_lens: Optional[List[int]]
- def __post_init__(self):
- # Set during the execution of the first attention op.
- # It is a list because it is needed to set per prompt
- # when alibi slopes is used. It is because of the limitation
- # from xformer API.
- # will not appear in the __repr__ and __init__
- self.attn_bias: Optional[List[torch.Tensor]] = None
- class TorchSDPABackendImpl(AttentionImpl):
- def __init__(
- self,
- num_heads: int,
- head_size: int,
- scale: float,
- num_kv_heads: Optional[int] = None,
- alibi_slopes: Optional[List[float]] = None,
- sliding_window: Optional[int] = None,
- ) -> None:
- self.num_heads = num_heads
- self.head_size = head_size
- self.scale = float(scale)
- self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
- self.sliding_window = sliding_window
- if alibi_slopes is not None:
- assert len(alibi_slopes) == num_heads
- alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
- self.alibi_slopes = alibi_slopes
- self.need_mask = (self.alibi_slopes is not None
- or self.sliding_window is not None)
- assert self.num_heads % self.num_kv_heads == 0
- self.num_queries_per_kv = self.num_heads // self.num_kv_heads
- suppored_head_sizes = PagedAttention.get_supported_head_sizes()
- if head_size not in suppored_head_sizes:
- raise ValueError(
- f"Head size {head_size} is not supported by PagedAttention. "
- f"Supported head sizes are: {suppored_head_sizes}.")
- def forward(
- self,
- query: torch.Tensor,
- key: torch.Tensor,
- value: torch.Tensor,
- kv_cache: Optional[torch.Tensor],
- attn_metadata: TorchSDPAMetadata,
- kv_scale: float,
- ) -> torch.Tensor:
- """Forward pass with torch SDPA and PagedAttention.
- Args:
- query: shape = [num_tokens, num_heads * head_size]
- key: shape = [num_tokens, num_kv_heads * head_size]
- value: shape = [num_tokens, num_kv_heads * head_size]
- kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
- attn_metadata: Metadata for attention.
- Returns:
- shape = [num_tokens, num_heads * head_size]
- """
- num_tokens, hidden_size = query.shape
- # Reshape the query, key, and value tensors.
- query = query.view(-1, self.num_heads, self.head_size)
- key = key.view(-1, self.num_kv_heads, self.head_size)
- value = value.view(-1, self.num_kv_heads, self.head_size)
- if kv_cache is not None:
- key_cache, value_cache = PagedAttention.split_kv_cache(
- kv_cache, self.num_kv_heads, self.head_size)
- PagedAttention.write_to_paged_cache(key, value, key_cache,
- value_cache,
- attn_metadata.slot_mapping,
- attn_metadata.kv_cache_dtype,
- kv_scale)
- if attn_metadata.is_prompt:
- if (kv_cache is None or attn_metadata.block_tables.numel() == 0):
- if self.num_kv_heads != self.num_heads:
- key = key.repeat_interleave(self.num_queries_per_kv, dim=1)
- value = value.repeat_interleave(self.num_queries_per_kv,
- dim=1)
- if attn_metadata.attn_bias is None:
- if self.alibi_slopes is not None:
- att_masks = _make_alibi_bias(
- self.alibi_slopes, query.dtype,
- attn_metadata.prompt_lens) # type: ignore
- elif self.sliding_window is not None:
- att_masks = _make_sliding_window_bias(
- attn_metadata.prompt_lens, self.sliding_window,
- query.dtype) # type: ignore
- else:
- att_masks = [None] * len(attn_metadata.prompt_lens)
- attn_metadata.attn_bias = att_masks
- query = query.movedim(0, query.dim() - 2)
- key = key.movedim(0, key.dim() - 2)
- value = value.movedim(0, value.dim() - 2)
- start = 0
- output = torch.empty(
- (num_tokens, self.num_heads, self.head_size),
- dtype=query.dtype)
- for prompt_len, mask in zip(attn_metadata.prompt_lens,
- attn_metadata.attn_bias):
- end = start + prompt_len
- sub_out = scaled_dot_product_attention(
- query[:, start:end, :],
- key[:, start:end, :],
- value[:, start:end, :],
- attn_mask=mask,
- dropout_p=0.0,
- is_causal=not self.need_mask,
- scale=self.scale).movedim(query.dim() - 2, 0)
- output[start:end, :, :] = sub_out
- start = end
- else:
- # prefix-enabled attention
- raise RuntimeError(
- "Torch SDPA backend doesn't support prefix decoding.")
- else:
- # Decoding run.
- output = PagedAttention.forward_decode(
- query,
- key_cache,
- value_cache,
- attn_metadata.block_tables,
- attn_metadata.context_lens,
- attn_metadata.max_context_len,
- attn_metadata.kv_cache_dtype,
- self.num_kv_heads,
- self.scale,
- self.alibi_slopes,
- kv_scale,
- )
- # Reshape the output tensor.
- return output.view(-1, self.num_heads * self.head_size)
- def _make_alibi_bias(
- alibi_slopes: torch.Tensor,
- dtype: torch.dtype,
- prompt_lens: List[int],
- ) -> List[torch.Tensor]:
- attn_biases = []
- for prompt_len in prompt_lens:
- bias = torch.arange(prompt_len, dtype=dtype)
- # NOTE: HF uses
- # `bias = bias[None, :].repeat(prompt_len, 1)`
- # here. We find that both biases give the same results, but
- # the bias below more accurately follows the original ALiBi
- # paper.
- bias = bias[None, :] - bias[:, None]
- num_heads = alibi_slopes.shape[0]
- bias = bias[None, :].repeat((num_heads, 1, 1))
- bias.mul_(alibi_slopes[:, None, None])
- inf_mask = torch.empty(
- (1, prompt_len, prompt_len),
- dtype=bias.dtype).fill_(-torch.inf).triu_(diagonal=1)
- attn_biases.append((bias + inf_mask).to(dtype))
- return attn_biases
- def _make_sliding_window_bias(
- prompt_lens: List[int],
- window_size: Optional[int],
- dtype: torch.dtype,
- ) -> List[torch.Tensor]:
- attn_biases = []
- for prompt_len in prompt_lens:
- tensor = torch.full(
- (1, prompt_len, prompt_len),
- dtype=dtype,
- fill_value=1,
- )
- shift = 0
- mask = torch.tril(tensor, diagonal=shift).to(dtype) # type: ignore
- if window_size is not None:
- mask = torch.triu(mask, diagonal=shift - window_size + 1)
- mask = torch.log(mask)
- attn_biases.append(mask.to(dtype))
- return attn_biases
|