gguf.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. from typing import Any, Dict, List, Optional
  2. import torch
  3. from torch.nn.parameter import Parameter
  4. from aphrodite import _custom_ops as ops
  5. from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
  6. from aphrodite.modeling.utils import set_weight_attrs
  7. from aphrodite.quantization.base_config import QuantizationConfig
  8. GGML_QUANT_SIZES = {
  9. 0: (1, 4), # F32
  10. 1: (1, 2), # F16
  11. 2: (32, 2 + 16), # Q4_0
  12. 3: (32, 2 + 2 + 16), # Q4_1
  13. 6: (32, 2 + 4 + 16), # Q5_0
  14. 7: (32, 2 + 2 + 4 + 16), # Q5_1
  15. 8: (32, 2 + 32), # Q8_0
  16. 9: (32, 4 + 4 + 32), # Q8_1
  17. 10: (256, 2 + 2 + 256 // 16 + 256 // 4), # Q2_K
  18. 11: (256, 2 + 256 // 4 + 256 // 8 + 12), # Q3_K
  19. 12: (256, 2 + 2 + 256 // 2 + 12), # Q4_K
  20. 13: (256, 2 + 2 + 256 // 2 + 256 // 8 + 12), # Q5_K
  21. 14: (256, 2 + 256 // 2 + 256 // 4 + 256 // 16), # Q6_K
  22. 15: (256, 4 + 256 + 256 // 8), # Q8_K
  23. 16: (256, 2 + 256 // 4), # IQ2_XXS
  24. 17: (256, 2 + 256 // 4 + 256 // 32), # IQ2_XS
  25. 18: (256, 2 + 3 * 256 // 8), # IQ3_XXS
  26. 19: (256, 2 + 256 // 8 + 256 // 16), # IQ1_S
  27. 20: (32, 2 + 32 // 2), # IQ4_NL
  28. 21: (256, 2 + 256 // 4 + 256 // 32 + 256 // 8 + 256 // 64), # IQ3_S
  29. 22: (256, 2 + 256 // 4 + 256 // 32 + 256 // 32), # IQ2_S
  30. 23: (256, 2 + 2 + 256 // 64 + 256 // 2), # IQ4_XS
  31. }
  32. class GGUFConfig(QuantizationConfig):
  33. """Config class for GGUF"""
  34. def __repr__(self) -> str:
  35. return ("GGUFConfig()")
  36. def get_name(self) -> str:
  37. return "gguf"
  38. def get_supported_act_dtypes(self) -> List[torch.dtype]:
  39. return [torch.half]
  40. @classmethod
  41. def get_min_capability(cls) -> int:
  42. return 61
  43. @staticmethod
  44. def get_config_filenames() -> List[str]:
  45. return []
  46. @classmethod
  47. def from_config(cls, config: Dict[str, Any]) -> "GGUFConfig":
  48. return cls()
  49. def get_quant_method(self, layer: torch.nn.Module,
  50. prefix: str) -> Optional["GGUFLinearMethod"]:
  51. if isinstance(layer, LinearBase):
  52. return GGUFLinearMethod(self)
  53. return None
  54. def get_scaled_act_names(self) -> List[str]:
  55. return []
  56. def merge_weight(self) -> bool:
  57. return False
  58. def rope_style(self) -> Optional[bool]:
  59. return False
  60. def quant_vocab(self) -> List[bool]:
  61. return [True, True]
  62. def support_fused_moe(self) -> bool:
  63. return False
  64. class GGUFLinearMethod(LinearMethodBase):
  65. """Linear method for GGUF.
  66. Args:
  67. quant_config: The GGUF quantization config.
  68. """
  69. def __init__(self, quant_config: GGUFConfig):
  70. self.quant_config = quant_config
  71. def create_weights(self, layer: torch.nn.Module,
  72. input_size_per_partition: int,
  73. output_partition_sizes: List[int], input_size: int,
  74. output_size: int, params_dtype: torch.dtype,
  75. **extra_weight_attrs):
  76. # The type of weight is unknown until load state dict
  77. weight = torch.nn.parameter.UninitializedParameter(requires_grad=False)
  78. # No need for pack_factor because we don't fuse qkv layers anyway.
  79. set_weight_attrs(weight, {
  80. "input_dim": 1,
  81. "output_dim": 0,
  82. })
  83. layer.register_parameter("weight", weight)
  84. weight_type = Parameter(
  85. torch.tensor((1), dtype=torch.int, device="cuda"),
  86. requires_grad=False,
  87. )
  88. set_weight_attrs(weight_type, {"ignore_warning": True})
  89. layer.register_parameter("weight_type", weight_type)
  90. def apply(self,
  91. layer: torch.nn.Module,
  92. x: torch.Tensor,
  93. bias: Optional[torch.Tensor] = None) -> torch.Tensor:
  94. if isinstance(layer.weight_type, torch.Tensor):
  95. layer.weight_type = int(layer.weight_type)
  96. # Check tensor parallel shape here on first pass
  97. block_size = GGML_QUANT_SIZES[layer.weight_type][1]
  98. if layer.weight.shape[1] % block_size != 0:
  99. raise ValueError("Size is not aligned with the quantized "
  100. "weight shape.")
  101. weight = layer.weight
  102. weight_type = layer.weight_type
  103. infeatures = x.shape[-1]
  104. outfeatures = weight.shape[0]
  105. out_shape = x.shape[:-1] + (weight.shape[0], )
  106. reshaped_x = x.reshape(-1, x.shape[-1])
  107. xshape = x.view(-1, x.shape[-1])
  108. if xshape.shape[0] == 1:
  109. out = ops.ggml_mul_mat_vec_a8(weight, reshaped_x, weight_type,
  110. outfeatures)
  111. elif xshape.shape[0] < 8 and weight_type < 16:
  112. out = ops.ggml_mul_mat_a8(weight, reshaped_x, weight_type,
  113. outfeatures)
  114. else:
  115. weight = ops.ggml_dequantize(weight, weight_type, outfeatures,
  116. infeatures)
  117. out = reshaped_x @ weight.T
  118. if bias is not None:
  119. out = out + bias
  120. return out.reshape(out_shape)
  121. def apply_embedding(self, layer: torch.nn.Module,
  122. x: torch.Tensor) -> torch.Tensor:
  123. if isinstance(layer.weight_type, torch.Tensor):
  124. layer.weight_type = int(layer.weight_type)
  125. weight = layer.weight
  126. weight_type = layer.weight_type
  127. dim, block_size = GGML_QUANT_SIZES[weight_type]
  128. vocab_size = weight.shape[0]
  129. hidden_size = weight.shape[1] // block_size * dim
  130. if weight_type < 2:
  131. return torch.embedding(weight.view(vocab_size, -1), x)
  132. x_flat = x.flatten()
  133. quant = torch.index_select(weight.view(vocab_size, -1),
  134. dim=0,
  135. index=x_flat)
  136. dequant = ops.ggml_dequantize(quant, weight_type, hidden_size,
  137. x_flat.shape[0])
  138. return dequant.view(*x.shape, hidden_size)
  139. def apply_moe_weights(self, w1: Dict[str,
  140. torch.Tensor], w2: Dict[str,
  141. torch.Tensor],
  142. x: torch.Tensor, gating_output: torch.Tensor,
  143. topk: int, renormalize: bool) -> torch.Tensor:
  144. raise NotImplementedError