123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912 |
- import argparse
- import asyncio
- import contextlib
- import datetime
- import enum
- import gc
- import os
- import socket
- import subprocess
- import sys
- import tempfile
- import threading
- import uuid
- import warnings
- from collections import defaultdict
- from functools import lru_cache, partial, wraps
- from platform import uname
- from typing import (Any, AsyncIterator, Awaitable, Callable, Dict, Generic,
- Hashable, List, Optional, OrderedDict, Set, Tuple, TypeVar,
- Union)
- import numpy as np
- import psutil
- import torch
- from loguru import logger
- from aphrodite.common.logger import enable_trace_function_call
- T = TypeVar("T")
- class _Sentinel:
- ...
- ALL_PINNED_SENTINEL = _Sentinel()
- STR_DTYPE_TO_TORCH_DTYPE = {
- "half": torch.half,
- "bfloat16": torch.bfloat16,
- "float": torch.float,
- "fp8": torch.uint8,
- "fp8_e4m3": torch.uint8,
- "fp8_e5m2": torch.uint8,
- }
- class Device(enum.Enum):
- GPU = enum.auto()
- CPU = enum.auto()
- class Counter:
- def __init__(self, start: int = 0) -> None:
- self.counter = start
- def __next__(self) -> int:
- i = self.counter
- self.counter += 1
- return i
- def reset(self) -> None:
- self.counter = 0
- class LRUCache(Generic[T]):
- def __init__(self, capacity: int):
- self.cache: OrderedDict[Hashable, T] = OrderedDict()
- self.pinned_items: Set[Hashable] = set()
- self.capacity = capacity
- def __contains__(self, key: Hashable) -> bool:
- return key in self.cache
- def __len__(self) -> int:
- return len(self.cache)
- def __getitem__(self, key: Hashable) -> Optional[T]:
- return self.get(key)
- def __setitem__(self, key: Hashable, value: T) -> None:
- self.put(key, value)
- def __delitem__(self, key: Hashable) -> None:
- self.pop(key)
- def touch(self, key: Hashable) -> None:
- self.cache.move_to_end(key)
- def get(self,
- key: Hashable,
- default_value: Optional[T] = None) -> Optional[T]:
- if key in self.cache:
- value: Optional[T] = self.cache[key]
- self.cache.move_to_end(key)
- else:
- value = default_value
- return value
- def put(self, key: Hashable, value: T) -> None:
- self.cache[key] = value
- self.cache.move_to_end(key)
- self._remove_old_if_needed()
- def pin(self, key: Hashable) -> None:
- """
- Pins a key in the cache preventing it from being
- evicted in the LRU order.
- """
- if key not in self.cache:
- raise ValueError(f"Cannot pin key: {key} not in cache.")
- self.pinned_items.add(key)
- def _unpin(self, key: Hashable) -> None:
- self.pinned_items.remove(key)
- def _on_remove(self, key: Hashable, value: Optional[T]):
- pass
- def remove_oldest(self, remove_pinned=False):
- if not self.cache:
- return
- if not remove_pinned:
- # pop the oldest item in the cache that is not pinned
- lru_key = next(
- (key for key in self.cache if key not in self.pinned_items),
- ALL_PINNED_SENTINEL)
- if lru_key is ALL_PINNED_SENTINEL:
- raise RuntimeError("All items are pinned, "
- "cannot remove oldest from the cache.")
- else:
- lru_key = next(iter(self.cache))
- self.pop(lru_key)
- def _remove_old_if_needed(self) -> None:
- while len(self.cache) > self.capacity:
- self.remove_oldest()
- def pop(self,
- key: Hashable,
- default_value: Optional[T] = None) -> Optional[T]:
- run_on_remove = key in self.cache
- value: Optional[T] = self.cache.pop(key, default_value)
- # remove from pinned items
- if key in self.pinned_items:
- self._unpin(key)
- if run_on_remove:
- self._on_remove(key, value)
- return value
- def clear(self):
- while len(self.cache) > 0:
- self.remove_oldest(remove_pinned=True)
- self.cache.clear()
- def is_hip() -> bool:
- return torch.version.hip is not None
- @lru_cache(maxsize=None)
- def is_cpu() -> bool:
- from importlib.metadata import PackageNotFoundError, version
- try:
- return "cpu" in version("aphrodite-engine")
- except PackageNotFoundError:
- return False
- @lru_cache(maxsize=None)
- def is_openvino() -> bool:
- from importlib.metadata import PackageNotFoundError, version
- try:
- return "openvino" in version("aphrodite-engine")
- except PackageNotFoundError:
- return False
- @lru_cache(maxsize=None)
- def is_neuron() -> bool:
- try:
- import transformers_neuronx
- except ImportError:
- transformers_neuronx = None
- return transformers_neuronx is not None
- @lru_cache(maxsize=None)
- def is_tpu() -> bool:
- try:
- import libtpu
- except ImportError:
- libtpu = None
- return libtpu is not None
- @lru_cache(maxsize=None)
- def is_xpu() -> bool:
- from importlib.metadata import version
- is_xpu_flag = "xpu" in version("aphrodite-engine")
- # aphrodite is not build with xpu
- if not is_xpu_flag:
- return False
- try:
- import intel_extension_for_pytorch as ipex # noqa: F401
- _import_ipex = True
- except ImportError as e:
- logger.warning(f"Import Error for IPEX: {e.msg}")
- _import_ipex = False
- # ipex dependency is not ready
- if not _import_ipex:
- logger.warning("not found ipex lib")
- return False
- return hasattr(torch, "xpu") and torch.xpu.is_available()
- @lru_cache(maxsize=None)
- def get_max_shared_memory_bytes(gpu: int = 0) -> int:
- """Returns the maximum shared memory per thread block in bytes."""
- # NOTE: This import statement should be executed lazily since
- # the Neuron-X backend does not have the `cuda_utils` module.
- from aphrodite import _custom_ops as ops
- max_shared_mem = (
- ops.get_max_shared_memory_per_block_device_attribute(gpu))
- # value 0 will cause MAX_SEQ_LEN become negative and test_attention.py
- # will fail
- assert max_shared_mem > 0, "max_shared_mem can not be zero"
- return int(max_shared_mem)
- def get_cpu_memory() -> int:
- """Returns the total CPU memory of the node in bytes."""
- return psutil.virtual_memory().total
- def random_uuid() -> str:
- return str(uuid.uuid4().hex)
- @lru_cache(maxsize=None)
- def get_aphrodite_instance_id():
- """
- If the environment variable APHRODITE_INSTANCE_ID is set, return it.
- Otherwise, return a random UUID.
- Instance id represents an instance of the Aphrodite. All processes in the
- same instance should have the same instance id.
- """
- return os.environ.get("APHRODITE_INSTANCE_ID",
- f"aphrodite-instance-{random_uuid()}")
- @lru_cache(maxsize=None)
- def in_wsl() -> bool:
- # Reference: https://github.com/microsoft/WSL/issues/4071
- return "microsoft" in " ".join(uname()).lower()
- def make_async(func: Callable[..., T]) -> Callable[..., Awaitable[T]]:
- """Take a blocking function, and run it on in an executor thread.
- This function prevents the blocking function from blocking the
- asyncio event loop.
- The code in this function needs to be thread safe.
- """
- def _async_wrapper(*args, **kwargs) -> asyncio.Future:
- loop = asyncio.get_event_loop()
- p_func = partial(func, *args, **kwargs)
- return loop.run_in_executor(executor=None, func=p_func)
- return _async_wrapper
- def merge_async_iterators(
- *iterators: AsyncIterator[T]) -> AsyncIterator[Tuple[int, T]]:
- """Merge multiple asynchronous iterators into a single iterator.
- This method handle the case where some iterators finish before others.
- When it yields, it yields a tuple (i, item) where i is the index of the
- iterator that yields the item.
- """
- queue: asyncio.Queue[Union[Tuple[int, T], Exception]] = asyncio.Queue()
- finished = [False] * len(iterators)
- async def producer(i: int, iterator: AsyncIterator[T]):
- try:
- async for item in iterator:
- await queue.put((i, item))
- except Exception as e:
- await queue.put(e)
- finished[i] = True
- _tasks = [
- asyncio.create_task(producer(i, iterator))
- for i, iterator in enumerate(iterators)
- ]
- async def consumer():
- try:
- while not all(finished) or not queue.empty():
- item = await queue.get()
- if isinstance(item, Exception):
- raise item
- yield item
- except (Exception, asyncio.CancelledError) as e:
- for task in _tasks:
- if sys.version_info >= (3, 9):
- # msg parameter only supported in Python 3.9+
- task.cancel(e)
- else:
- task.cancel()
- raise e
- await asyncio.gather(*_tasks)
- return consumer()
- def get_ip() -> str:
- host_ip = os.environ.get("HOST_IP")
- if host_ip:
- return host_ip
- # IP is not set, try to get it from the network interface
- # try ipv4
- s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
- try:
- s.connect(("8.8.8.8", 80)) # Doesn't need to be reachable
- return s.getsockname()[0]
- except Exception:
- pass
- # try ipv6
- try:
- s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
- # Google's public DNS server, see
- # https://developers.google.com/speed/public-dns/docs/using#addresses
- s.connect(("2001:4860:4860::8888", 80)) # Doesn't need to be reachable
- return s.getsockname()[0]
- except Exception:
- pass
- warnings.warn(
- "Failed to get the IP address, using 0.0.0.0 by default."
- "The value can be set by the environment variable HOST_IP.",
- stacklevel=2)
- return "0.0.0.0"
- def get_distributed_init_method(ip: str, port: int) -> str:
- # Brackets are not permitted in ipv4 addresses,
- # see https://github.com/python/cpython/issues/103848
- return f"tcp://[{ip}]:{port}" if ":" in ip else f"tcp://{ip}:{port}"
- def get_open_port() -> int:
- # try ipv4
- try:
- with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
- s.bind(("", 0))
- return s.getsockname()[1]
- except OSError:
- # try ipv6
- with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
- s.bind(("", 0))
- return s.getsockname()[1]
- def update_environment_variables(envs: Dict[str, str]):
- for k, v in envs.items():
- if k in os.environ and os.environ[k] != v:
- logger.warning(f"Overwriting environment variable {k} "
- f"from '{os.environ[k]}' to '{v}'")
- os.environ[k] = v
- def init_kmp_env():
- if not is_cpu():
- return
- ld_prealod_str = os.getenv("LD_PRELOAD", "")
- if "libiomp5.so" not in ld_prealod_str:
- return
- # The time(milliseconds) that a thread should wait after completing the
- # execution of a parallel region, before sleeping.
- os.environ['KMP_BLOCKTIME'] = "1"
- # dump settings on start up
- os.environ['KMP_SETTINGS'] = "1"
- # Prevents the CPU to run into low performance state
- os.environ['KMP_TPAUSE'] = "0"
- # Provides fine granularity parallelism
- os.environ['KMP_FORKJOIN_BARRIER_PATTERN'] = "dist,dist"
- os.environ['KMP_PLAIN_BARRIER_PATTERN'] = "dist,dist"
- os.environ['KMP_REDUCTION_BARRIER_PATTERN'] = "dist,dist"
- def chunk_list(lst: List[T], chunk_size: int):
- """Yield successive chunk_size chunks from lst."""
- for i in range(0, len(lst), chunk_size):
- yield lst[i:i + chunk_size]
- def cdiv(a: int, b: int) -> int:
- """Ceiling division."""
- return -(a // -b)
- def _generate_random_fp8(
- tensor: torch.tensor,
- low: float,
- high: float,
- ) -> None:
- # NOTE: Due to NaN and Inf representation for fp8 data type,
- # it may occur Inf or NaN if we directly use torch.randint
- # to generate random data for fp8 data.
- # For example, s.11111.00 in fp8e5m2 format represents Inf.
- # | E4M3 | E5M2
- #-----|-------------|-------------------
- # Inf | N/A | s.11111.00
- # NaN | s.1111.111 | s.11111.{01,10,11}
- from aphrodite import _custom_ops as ops
- tensor_tmp = torch.empty_like(tensor, dtype=torch.float16)
- tensor_tmp.uniform_(low, high)
- ops.convert_fp8(tensor, tensor_tmp)
- del tensor_tmp
- def get_kv_cache_torch_dtype(
- cache_dtype: Optional[Union[str, torch.dtype]],
- model_dtype: Optional[Union[str, torch.dtype]] = None) -> torch.dtype:
- if isinstance(cache_dtype, str):
- if cache_dtype == "auto":
- if isinstance(model_dtype, str):
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
- elif isinstance(model_dtype, torch.dtype):
- torch_dtype = model_dtype
- else:
- raise ValueError(f"Invalid model dtype: {model_dtype}")
- elif cache_dtype in ["half", "bfloat16", "float"]:
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_dtype]
- elif cache_dtype == "fp8":
- torch_dtype = torch.uint8
- else:
- raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
- elif isinstance(cache_dtype, torch.dtype):
- torch_dtype = cache_dtype
- else:
- raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
- return torch_dtype
- def create_kv_caches_with_random_flash(
- num_blocks: int,
- block_size: int,
- num_layers: int,
- num_heads: int,
- head_size: int,
- cache_dtype: Optional[Union[str, torch.dtype]],
- model_dtype: Optional[Union[str, torch.dtype]] = None,
- seed: int = 0,
- device: Optional[str] = "cuda",
- ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
- assert cache_dtype != "fp8"
- torch.random.manual_seed(seed)
- if torch.cuda.is_available():
- torch.cuda.manual_seed(seed)
- torch_dtype = get_kv_cache_torch_dtype(cache_dtype, model_dtype)
- key_value_cache_shape = (num_blocks, 2, block_size, num_heads, head_size)
- scale = head_size**-0.5
- key_caches, value_caches = [], []
- for _ in range(num_layers):
- key_value_cache = torch.empty(size=key_value_cache_shape,
- dtype=torch_dtype,
- device=device)
- key_value_cache.uniform_(-scale, scale)
- key_caches.append(key_value_cache[:, 0])
- value_caches.append(key_value_cache[:, 1])
- return key_caches, value_caches
- def create_kv_caches_with_random(
- num_blocks: int,
- block_size: int,
- num_layers: int,
- num_heads: int,
- head_size: int,
- cache_dtype: Optional[Union[str, torch.dtype]],
- model_dtype: Optional[Union[str, torch.dtype]] = None,
- seed: int = 0,
- device: Optional[str] = "cuda",
- ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
- torch.random.manual_seed(seed)
- if torch.cuda.is_available():
- torch.cuda.manual_seed(seed)
- torch_dtype = get_kv_cache_torch_dtype(cache_dtype, model_dtype)
- scale = head_size**-0.5
- x = 16 // torch.tensor([], dtype=torch_dtype).element_size()
- key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
- key_caches = []
- for _ in range(num_layers):
- key_cache = torch.empty(size=key_cache_shape,
- dtype=torch_dtype,
- device=device)
- if cache_dtype in ["auto", "half", "bfloat16", "float"]:
- key_cache.uniform_(-scale, scale)
- elif cache_dtype == 'fp8':
- _generate_random_fp8(key_cache, -scale, scale)
- else:
- raise ValueError(
- f"Does not support key cache of type {cache_dtype}")
- key_caches.append(key_cache)
- value_cache_shape = (num_blocks, num_heads, head_size, block_size)
- value_caches = []
- for _ in range(num_layers):
- value_cache = torch.empty(size=value_cache_shape,
- dtype=torch_dtype,
- device=device)
- if cache_dtype in ["auto", "half", "bfloat16", "float"]:
- value_cache.uniform_(-scale, scale)
- elif cache_dtype == 'fp8':
- _generate_random_fp8(value_cache, -scale, scale)
- else:
- raise ValueError(
- f"Does not support value cache of type {cache_dtype}")
- value_caches.append(value_cache)
- return key_caches, value_caches
- @lru_cache
- def print_warning_once(msg: str) -> None:
- logger.warning(msg)
- @lru_cache(maxsize=None)
- def is_pin_memory_available() -> bool:
- if in_wsl():
- # Pinning memory in WSL is not supported.
- # https://docs.nvidia.com/cuda/wsl-user-guide/index.html#known-limitations-for-linux-cuda-applications
- print_warning_once("Using 'pin_memory=False' as WSL is detected. "
- "This may slow down the performance.")
- return False
- elif is_xpu():
- print_warning_once("Pin memory is not supported on XPU.")
- return False
- elif is_neuron():
- print_warning_once("Pin memory is not supported on Neuron.")
- return False
- elif is_cpu() or is_openvino():
- return False
- return True
- class CudaMemoryProfiler:
- def __init__(self, device=None):
- self.device = device
- def current_memory_usage(self) -> float:
- # Return the memory usage in bytes.
- if torch.cuda.is_available():
- torch.cuda.reset_peak_memory_stats(self.device)
- mem = torch.cuda.max_memory_allocated(self.device)
- elif is_xpu():
- torch.xpu.reset_peak_memory_stats(self.device)
- mem = torch.xpu.max_memory_allocated(self.device)
- return mem
- def __enter__(self):
- self.initial_memory = self.current_memory_usage()
- # This allows us to call methods of the context manager if needed
- return self
- def __exit__(self, exc_type, exc_val, exc_tb):
- self.final_memory = self.current_memory_usage()
- self.consumed_memory = self.final_memory - self.initial_memory
- # Force garbage collection
- gc.collect()
- def str_to_int_tuple(s: str) -> Tuple[int, ...]:
- """Convert a string to a tuple of integers."""
- try:
- return tuple(map(int, s.split(",")))
- except ValueError as e:
- raise ValueError(
- "String must be a series of integers separated by commas "
- f"(e.g., 1, 2, 3). Given input: {s}") from e
- def make_tensor_with_pad(
- x: List[List[int]],
- max_len: int,
- pad: int,
- dtype: torch.dtype,
- device: Optional[Union[str, torch.device]],
- ) -> torch.Tensor:
- """Make a padded tensor of a 2D inputs.
- The padding is applied to the end of each inner list until it reaches
- `max_len`.
- """
- padded_x = np.zeros([len(x), max_len], dtype=np.int32) + pad
- for ind, blocktb in enumerate(x):
- assert len(blocktb) <= max_len
- padded_x[ind, :len(blocktb)] = blocktb
- return torch.tensor(padded_x, dtype=dtype, device=device)
- def async_tensor_h2d(
- data: list,
- dtype: torch.dtype,
- target_device: Union[str, torch.device],
- pin_memory: bool,
- ) -> torch.Tensor:
- """Asynchronously create a tensor and copy it from host to device."""
- t = torch.tensor(data, dtype=dtype, pin_memory=pin_memory, device="cpu")
- return t.to(device=target_device, non_blocking=True)
- def maybe_expand_dim(tensor: torch.Tensor,
- target_dims: int,
- size: int = 1) -> torch.Tensor:
- """Expand the tensor to the target_dims."""
- if tensor.ndim < target_dims:
- tensor = tensor.view(-1, *([size] * (target_dims - tensor.ndim)))
- return tensor
- def get_dtype_size(dtype: torch.dtype) -> int:
- """Get the size of the data type in bytes."""
- return torch.tensor([], dtype=dtype).element_size()
- def merge_dicts(dict1: Dict[Any, List[Any]],
- dict2: Dict[Any, List[Any]]) -> Dict[Any, List[Any]]:
- """Merge 2 dicts that have key -> List of items.
-
- When a key conflicts, the values in dict1 is prioritized.
- """
- merged_dict = defaultdict(list)
- for key, value in dict1.items():
- merged_dict[key].extend(value)
- for key, value in dict2.items():
- merged_dict[key].extend(value)
- return dict(merged_dict)
- def init_cached_hf_modules():
- """
- Lazy initialization of the Hugging Face modules.
- """
- from transformers.dynamic_module_utils import init_hf_modules
- init_hf_modules()
- @lru_cache(maxsize=None)
- def find_library(lib_name: str) -> str:
- """
- Find the library file in the system.
- `lib_name` is full filename, with both prefix and suffix.
- This function resolves `lib_name` to the full path of the library.
- """
- # Adapted from https://github.com/openai/triton/blob/main/third_party/nvidia/backend/driver.py#L19 # noqa
- # According to https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
- # `/sbin/ldconfig` should exist in all Linux systems.
- # `/sbin/ldconfig` searches the library in the system
- libs = subprocess.check_output(["/sbin/ldconfig", "-p"]).decode()
- # each line looks like the following:
- # libcuda.so.1 (libc6,x86-64) => /lib/x86_64-linux-gnu/libcuda.so.1
- locs = [line.split()[-1] for line in libs.splitlines() if lib_name in line]
- # `LD_LIBRARY_PATH` searches the library in the user-defined paths
- env_ld_library_path = os.getenv("LD_LIBRARY_PATH")
- if not locs and env_ld_library_path:
- locs = [
- os.path.join(dir, lib_name)
- for dir in env_ld_library_path.split(":")
- if os.path.exists(os.path.join(dir, lib_name))
- ]
- if not locs:
- raise ValueError(f"Cannot find {lib_name} in the system.")
- return locs[0]
- def find_nccl_library():
- """
- We either use the library file specified by the `APHRODITE_NCCL_SO_PATH`
- environment variable, or we find the library file brought by PyTorch.
- After importing `torch`, `libnccl.so.2` or `librccl.so.1` can be
- found by `ctypes` automatically.
- """
- so_file = os.environ.get("APHRODITE_NCCL_SO_PATH", "")
- # manually load the nccl library
- if so_file:
- logger.info("Found nccl from environment variable "
- f"APHRODITE_NCCL_SO_PATH={so_file}")
- else:
- if torch.version.cuda is not None:
- so_file = "libnccl.so.2"
- elif torch.version.hip is not None:
- so_file = "librccl.so.1"
- else:
- raise ValueError("NCCL only supports CUDA and ROCm backends.")
- logger.info(f"Found nccl from library {so_file}")
- return so_file
- def enable_trace_function_call_for_thread() -> None:
- if int(os.getenv("APHRODITE_TRACE_FUNCTION", "0")):
- tmp_dir = tempfile.gettempdir()
- filename = (f"APHRODITE_TRACE_FUNCTION_for_process_{os.getpid()}"
- f"_thread_{threading.get_ident()}_"
- f"at_{datetime.datetime.now()}.log").replace(" ", "_")
- log_path = os.path.join(tmp_dir, "aphrodite",
- get_aphrodite_instance_id(), filename)
- os.makedirs(os.path.dirname(log_path), exist_ok=True)
- enable_trace_function_call(log_path)
- def identity(value: T) -> T:
- return value
- F = TypeVar('F', bound=Callable[..., Any])
- def deprecate_kwargs(
- *kws: str,
- is_deprecated: Union[bool, Callable[[], bool]] = True,
- additional_message: Optional[str] = None) -> Callable[[F], F]:
- deprecated_kws = set(kws)
- if not callable(is_deprecated):
- is_deprecated = partial(identity, is_deprecated)
- def wrapper(fn: F) -> F:
- @wraps(fn)
- def inner(*args, **kwargs):
- if is_deprecated():
- deprecated_kwargs = kwargs.keys() & deprecated_kws
- if deprecated_kwargs:
- msg = (
- f"The keyword arguments {deprecated_kwargs} are "
- "deprecated and will be removed in a future update.")
- if additional_message is not None:
- msg += f" {additional_message}"
- warnings.warn(
- DeprecationWarning(msg),
- stacklevel=3, # The inner function takes up one level
- )
- return fn(*args, **kwargs)
- return inner # type: ignore
- return wrapper
- @lru_cache(maxsize=8)
- def _cuda_device_count_stateless(
- cuda_visible_devices: Optional[str] = None) -> int:
- # Note: cuda_visible_devices is not used, but we keep it as an argument for
- # LRU Cache purposes.
- # Code below is based on
- # https://github.com/pytorch/pytorch/blob/
- # c1cd946818442aca8c7f812b16d187ce1586c3bc/
- # torch/cuda/__init__.py#L831C1-L831C17
- import torch.cuda
- import torch.version
- if not torch.cuda._is_compiled():
- return 0
- if is_hip():
- # ROCm uses amdsmi instead of nvml for stateless device count
- # This requires a sufficiently modern version of Torch 2.4.0
- raw_count = torch.cuda._device_count_amdsmi() if (hasattr(
- torch.cuda, "_device_count_amdsmi")) else -1
- else:
- raw_count = torch.cuda._device_count_nvml()
- r = torch._C._cuda_getDeviceCount() if raw_count < 0 else raw_count
- return r
- def cuda_device_count_stateless() -> int:
- """Get number of CUDA devices, caching based on the value of
- CUDA_VISIBLE_DEVICES at the time of call.
-
- This should be used instead of torch.cuda.device_count()
- unless CUDA_VISIBLE_DEVICES has already been set to the desired
- value."""
- # This can be removed and simply replaced with torch.cuda.get_device_count
- # after https://github.com/pytorch/pytorch/pull/122815 is released.
- return _cuda_device_count_stateless(os.environ.get("CUDA_VISIBLE_DEVICES"))
- def error_on_invalid_device_count_status():
- cache_entries = 0
- with contextlib.suppress(Exception):
- # future pytorch will fix the issue, device_count will not be cached
- # at that time, `.cache_info().currsize` will error out
- cache_entries = torch.cuda.device_count.cache_info().currsize
- if cache_entries != 0:
- # the function is already called, and the result is cached
- remembered = torch.cuda.device_count()
- current = cuda_device_count_stateless()
- if remembered > current:
- raise RuntimeError(
- "The number of CUDA devices has changed since the first "
- "call to torch.cuda.device_count(). This is not allowed "
- "and may result in undefined behavior. Please set "
- "CUDA_VISIBLE_DEVICES to the GPUs you want to use.")
- # NVML utils
- # Note that NVML is not affected by `CUDA_VISIBLE_DEVICES`,
- # all the related functions work on real physical device ids.
- # the major benefit of using NVML is that it will not initialize CUDA
- try:
- import pynvml
- except ImportError:
- # For non-NV devices
- pynvml = None
- def with_nvml_context(fn):
- @wraps(fn)
- def wrapper(*args, **kwargs):
- if pynvml is not None:
- pynvml.nvmlInit()
- try:
- return fn(*args, **kwargs)
- finally:
- if pynvml is not None:
- pynvml.nvmlShutdown()
- return wrapper
- @with_nvml_context
- def is_full_nvlink(device_ids: List[int]) -> bool:
- """
- query if the set of gpus are fully connected by nvlink (1 hop)
- """
- handles = [pynvml.nvmlDeviceGetHandleByIndex(i) for i in device_ids]
- for i, handle in enumerate(handles):
- for j, peer_handle in enumerate(handles):
- if i < j:
- try:
- p2p_status = pynvml.nvmlDeviceGetP2PStatus(
- handle, peer_handle, pynvml.NVML_P2P_CAPS_INDEX_NVLINK)
- if p2p_status != pynvml.NVML_P2P_STATUS_OK:
- return False
- except pynvml.NVMLError as error:
- logger.error(
- "NVLink detection failed. This is normal if your"
- " machine has no NVLink equipped.",
- exc_info=error)
- return False
- return True
- class FlexibleArgumentParser(argparse.ArgumentParser):
- """ArgumentParser that allows both underscore and dash in names."""
- def parse_args(self, args=None, namespace=None):
- if args is None:
- args = sys.argv[1:]
- # Convert underscores to dashes and vice versa in argument names
- processed_args = []
- for arg in args:
- if arg.startswith('--'):
- if '=' in arg:
- key, value = arg.split('=', 1)
- key = '--' + key[len('--'):].replace('_', '-')
- processed_args.append(f'{key}={value}')
- else:
- processed_args.append('--' +
- arg[len('--'):].replace('_', '-'))
- else:
- processed_args.append(arg)
- return super().parse_args(processed_args, namespace)
- async def _run_task_with_lock(task: Callable, lock: asyncio.Lock, *args,
- **kwargs):
- """Utility function to run async task in a lock"""
- async with lock:
- return await task(*args, **kwargs)
|