PygmalionAI's large-scale inference engine
pygmalion.chat

It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving the Pygmalion models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

AlpinDale 926ccfd387 exponent is 1.0 by default 4 місяців тому
.github a03e0e2ea4 ci: exclude cu118 and cu121 from build and add py_limited_api (#639) 4 місяців тому
aphrodite 926ccfd387 exponent is 1.0 by default 4 місяців тому
assets b3df2351c8 readme: update with bsz1 graph 10 місяців тому
cmake f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
docker f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
docs a0e446a17d feat: initial encoder-decoder support with BART model (#633) 4 місяців тому
examples a0e446a17d feat: initial encoder-decoder support with BART model (#633) 4 місяців тому
kernels a401f8e05d feat: per-tensor token epilogue kernels (#630) 4 місяців тому
tests f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
.clang-format f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
.dockerignore f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
.env f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
.gitignore f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
CMakeLists.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
CODE_OF_CONDUCT.md e7ea38f243 chore: add contribution guidelines + Code of Conduct (#507) 6 місяців тому
CONTRIBUTING.md e7ea38f243 chore: add contribution guidelines + Code of Conduct (#507) 6 місяців тому
Dockerfile f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
Dockerfile.cpu f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
Dockerfile.neuron f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
Dockerfile.openvino f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
Dockerfile.ppc64le f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
Dockerfile.rocm f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
Dockerfile.tpu f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
Dockerfile.xpu f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
LICENSE 5adcb33e14 Revert license back to AGPLv3 (#38) 1 рік тому
MANIFEST.in f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
README.md ba848b00f3 readme: fix model name typo (#627) 4 місяців тому
build_wheel.sh f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
config.yaml f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
docker-compose.yml f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
entrypoint.sh f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
env.py e42a78381a feat: switch from pylint to ruff (#322) 9 місяців тому
environment.yaml f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
formatting.sh f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
mypy.ini 9d81716bfd [v0.5.3] Release Candidate (#388) 8 місяців тому
patch_xformers.rocm.sh 13d850334e fix: navi support (#283) 10 місяців тому
pyproject.toml f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-adag.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-build.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-common.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-cpu.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-cuda.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-dev.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-lint.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-neuron.txt 9d81716bfd [v0.5.3] Release Candidate (#388) 8 місяців тому
requirements-openvino.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-rocm.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-test.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-tpu.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
requirements-xpu.txt f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
runtime.sh cbe37e8b18 fix: speed up cuda home detection (#288) 10 місяців тому
setup.py f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому
update-runtime.sh f1d0b77c92 [0.6.0] Release Candidate (#481) 4 місяців тому

README.md

Breathing Life into Language

aphrodite

Aphrodite is the official backend engine for PygmalionAI. It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving Hugging Face-compatible models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

Aphrodite builds upon and integrates the exceptional work from various projects.

The compute necessary for Aphrodite's development is provided by Arc Compute.

🔥 News

(09/2024) v0.6.0 is released, with huge throughput improvements, many new quant formats (including fp8 and llm-compressor), asymmetric tensor parallel, pipeline parallel and more! Please check out the exhaustive documentation for the User and Developer guides.

Features

  • Continuous Batching
  • Efficient K/V management with PagedAttention from vLLM
  • Optimized CUDA kernels for improved inference
  • Quantization support via AQLM, AWQ, Bitsandbytes, GGUF, GPTQ, QuIP#, Smoothquant+, SqueezeLLM, Marlin, FP4, FP6, FP8, FP12
  • Distributed inference
  • 8-bit KV Cache for higher context lengths and throughput, at both FP8 E5M3 and E4M3 formats.

Quickstart

Install the engine:

pip install -U aphrodite-engine==0.6.0

Then launch a model:

aphrodite run meta-llama/Meta-Llama-3.1-8B-Instruct

This will create a OpenAI-compatible API server that can be accessed at port 2242 of the localhost. You can plug in the API into a UI that supports OpenAI, such as SillyTavern.

Please refer to the documentation for the full list of arguments and flags you can pass to the engine.

You can play around with the engine in the demo here:

Open In Colab

Docker

Additionally, we provide a Docker image for easy deployment. Here's a basic command to get you started:

docker run --runtime nvidia --gpus all \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    #--env "CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7" \
    -p 2242:2242 \
    --ipc=host \
    alpindale/aphrodite-openai:latest \
    --model NousResearch/Meta-Llama-3.1-8B-Instruct \
    --tensor-parallel-size 8 \
    --api-keys "sk-empty"

This will pull the Aphrodite Engine image (~8GiB download), and launch the engine with the Llama-3.1-8B-Instruct model at port 2242.

Requirements

  • Operating System: Linux (or WSL for Windows)
  • Python: 3.8 to 3.12

For windows users, it's recommended to use tabbyAPI instead, if you do not need batching support.

Build Requirements:

  • CUDA >= 11

For supported devices, see here. Generally speaking, all semi-modern GPUs are supported - down to Pascal (GTX 10xx, P40, etc.) We also support AMD GPUs, Intel CPUs and GPUs, Google TPU, and AWS Inferentia.

Notes

  1. By design, Aphrodite takes up 90% of your GPU's VRAM. If you're not serving an LLM at scale, you may want to limit the amount of memory it takes up. You can do this in the API example by launching the server with the --gpu-memory-utilization 0.6 (0.6 means 60%).

  2. You can view the full list of commands by running aphrodite run --help.

Acknowledgements

Aphrodite Engine would have not been possible without the phenomenal work of other open-source projects. Credits go to:

Contributing

Everyone is welcome to contribute. You can support the project by opening Pull Requests for new features, fixes, or general UX improvements.