mixtral_quant.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. # coding=utf-8
  2. # Adapted from
  3. # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
  4. # Copyright 2023 The vLLM team.
  5. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
  6. #
  7. # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
  8. # and OPT implementations in this library. It has been modified from its
  9. # original forms to accommodate minor architectural differences compared
  10. # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
  11. #
  12. # Licensed under the Apache License, Version 2.0 (the "License");
  13. # you may not use this file except in compliance with the License.
  14. # You may obtain a copy of the License at
  15. #
  16. # http://www.apache.org/licenses/LICENSE-2.0
  17. #
  18. # Unless required by applicable law or agreed to in writing, software
  19. # distributed under the License is distributed on an "AS IS" BASIS,
  20. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  21. # See the License for the specific language governing permissions and
  22. # limitations under the License.
  23. """Inference-only Mixtral model."""
  24. from typing import Iterable, List, Optional, Tuple
  25. import numpy as np
  26. import torch
  27. import torch.nn.functional as F
  28. from torch import nn
  29. from transformers import MixtralConfig
  30. from aphrodite.attention import Attention, AttentionMetadata
  31. from aphrodite.common.config import CacheConfig
  32. from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
  33. from aphrodite.distributed import (get_tensor_model_parallel_rank,
  34. get_tensor_model_parallel_world_size,
  35. tensor_model_parallel_all_reduce)
  36. from aphrodite.modeling.layers.layernorm import RMSNorm
  37. from aphrodite.modeling.layers.linear import (QKVParallelLinear,
  38. ReplicatedLinear,
  39. RowParallelLinear)
  40. from aphrodite.modeling.layers.logits_processor import LogitsProcessor
  41. from aphrodite.modeling.layers.rotary_embedding import get_rope
  42. from aphrodite.modeling.layers.sampler import Sampler
  43. from aphrodite.modeling.layers.vocab_parallel_embedding import (
  44. ParallelLMHead, VocabParallelEmbedding)
  45. from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
  46. from aphrodite.modeling.sampling_metadata import SamplingMetadata
  47. from aphrodite.quantization.base_config import QuantizationConfig
  48. class MixtralMLP(nn.Module):
  49. def __init__(
  50. self,
  51. num_experts: int,
  52. hidden_size: int,
  53. intermediate_size: int,
  54. quant_config: Optional[QuantizationConfig] = None,
  55. ) -> None:
  56. super().__init__()
  57. self.num_experts = num_experts
  58. self.ffn_dim = intermediate_size
  59. self.hidden_dim = hidden_size
  60. self.w1 = ReplicatedLinear(self.hidden_dim,
  61. self.ffn_dim,
  62. bias=False,
  63. quant_config=quant_config)
  64. self.w2 = ReplicatedLinear(self.ffn_dim,
  65. self.hidden_dim,
  66. bias=False,
  67. quant_config=quant_config)
  68. self.w3 = ReplicatedLinear(self.hidden_dim,
  69. self.ffn_dim,
  70. bias=False,
  71. quant_config=quant_config)
  72. # TODO: Use Aphrodite's SiluAndMul
  73. self.act_fn = nn.SiLU()
  74. def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
  75. w1_out, _ = self.w1(hidden_states)
  76. w1_out = self.act_fn(w1_out)
  77. w3_out, _ = self.w3(hidden_states)
  78. current_hidden_states = w1_out * w3_out
  79. current_hidden_states, _ = self.w2(current_hidden_states)
  80. return current_hidden_states
  81. class MixtralMoE(nn.Module):
  82. def __init__(
  83. self,
  84. config: MixtralConfig,
  85. quant_config: Optional[QuantizationConfig] = None,
  86. ):
  87. super().__init__()
  88. self.config = config
  89. self.rank = get_tensor_model_parallel_rank()
  90. self.tp_size = get_tensor_model_parallel_world_size()
  91. self.num_total_experts = config.num_local_experts
  92. self.top_k = config.num_experts_per_tok
  93. if self.tp_size > self.num_total_experts:
  94. raise ValueError(
  95. f"Tensor parallel size {self.tp_size} is greater than "
  96. f"the number of experts {self.num_total_experts}.")
  97. # Split experts equally between ranks
  98. self.expert_indicies = np.array_split(range(
  99. self.num_total_experts), self.tp_size)[self.rank].tolist()
  100. if not self.expert_indicies:
  101. raise ValueError(
  102. f"Rank {self.rank} has no experts assigned to it.")
  103. self.experts = nn.ModuleList([
  104. MixtralMLP(self.num_total_experts,
  105. config.hidden_size,
  106. config.intermediate_size,
  107. quant_config=quant_config)
  108. if idx in self.expert_indicies else None
  109. for idx in range(self.num_total_experts)
  110. ])
  111. self.gate = ReplicatedLinear(config.hidden_size,
  112. self.num_total_experts,
  113. bias=False,
  114. quant_config=None)
  115. def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
  116. num_tokens, hidden_dim = hidden_states.shape
  117. hidden_states = hidden_states.view(-1, hidden_dim)
  118. # router_logits: (num_tokens, n_experts)
  119. router_logits, _ = self.gate(hidden_states)
  120. routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
  121. routing_weights, selected_experts = torch.topk(routing_weights,
  122. self.top_k,
  123. dim=-1)
  124. routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
  125. final_hidden_states = None
  126. for expert_idx in self.expert_indicies:
  127. expert_layer = self.experts[expert_idx]
  128. expert_mask = (selected_experts == expert_idx)
  129. expert_weights = (routing_weights * expert_mask).sum(dim=-1,
  130. keepdim=True)
  131. current_hidden_states = expert_layer(hidden_states).mul_(
  132. expert_weights)
  133. if final_hidden_states is None:
  134. final_hidden_states = current_hidden_states
  135. else:
  136. final_hidden_states.add_(current_hidden_states)
  137. return tensor_model_parallel_all_reduce(final_hidden_states).view(
  138. num_tokens, hidden_dim)
  139. class MixtralAttention(nn.Module):
  140. def __init__(
  141. self,
  142. hidden_size: int,
  143. num_heads: int,
  144. num_kv_heads: int,
  145. max_position: int = 4096 * 32,
  146. rope_theta: float = 10000,
  147. quant_config: Optional[QuantizationConfig] = None,
  148. cache_config: Optional[CacheConfig] = None,
  149. ) -> None:
  150. super().__init__()
  151. self.hidden_size = hidden_size
  152. tp_size = get_tensor_model_parallel_world_size()
  153. self.total_num_heads = num_heads
  154. assert self.total_num_heads % tp_size == 0
  155. self.num_heads = self.total_num_heads // tp_size
  156. self.total_num_kv_heads = num_kv_heads
  157. if self.total_num_kv_heads >= tp_size:
  158. # Number of KV heads is greater than TP size, so we partition
  159. # the KV heads across multiple tensor parallel GPUs.
  160. assert self.total_num_kv_heads % tp_size == 0
  161. else:
  162. # Number of KV heads is less than TP size, so we replicate
  163. # the KV heads across multiple tensor parallel GPUs.
  164. assert tp_size % self.total_num_kv_heads == 0
  165. self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
  166. self.head_dim = hidden_size // self.total_num_heads
  167. self.q_size = self.num_heads * self.head_dim
  168. self.kv_size = self.num_kv_heads * self.head_dim
  169. self.scaling = self.head_dim**-0.5
  170. self.rope_theta = rope_theta
  171. self.qkv_proj = QKVParallelLinear(
  172. hidden_size,
  173. self.head_dim,
  174. self.total_num_heads,
  175. self.total_num_kv_heads,
  176. bias=False,
  177. quant_config=quant_config,
  178. )
  179. self.o_proj = RowParallelLinear(
  180. self.total_num_heads * self.head_dim,
  181. hidden_size,
  182. bias=False,
  183. quant_config=quant_config,
  184. )
  185. self.rotary_emb = get_rope(
  186. self.head_dim,
  187. rotary_dim=self.head_dim,
  188. max_position=max_position,
  189. base=int(self.rope_theta),
  190. is_neox_style=True,
  191. )
  192. self.attn = Attention(self.num_heads,
  193. self.head_dim,
  194. self.scaling,
  195. num_kv_heads=self.num_kv_heads,
  196. cache_config=cache_config,
  197. quant_config=quant_config)
  198. def forward(
  199. self,
  200. positions: torch.Tensor,
  201. hidden_states: torch.Tensor,
  202. kv_cache: torch.Tensor,
  203. attn_metadata: AttentionMetadata,
  204. ) -> torch.Tensor:
  205. qkv, _ = self.qkv_proj(hidden_states)
  206. q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
  207. q, k = self.rotary_emb(positions, q, k)
  208. attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
  209. output, _ = self.o_proj(attn_output)
  210. return output
  211. class MixtralDecoderLayer(nn.Module):
  212. def __init__(
  213. self,
  214. config: MixtralConfig,
  215. cache_config: Optional[CacheConfig] = None,
  216. quant_config: Optional[QuantizationConfig] = None,
  217. ) -> None:
  218. super().__init__()
  219. self.hidden_size = config.hidden_size
  220. # Requires transformers > 4.32.0
  221. rope_theta = getattr(config, "rope_theta", 10000)
  222. self.self_attn = MixtralAttention(
  223. hidden_size=self.hidden_size,
  224. num_heads=config.num_attention_heads,
  225. max_position=config.max_position_embeddings,
  226. num_kv_heads=config.num_key_value_heads,
  227. rope_theta=rope_theta,
  228. cache_config=cache_config,
  229. quant_config=quant_config)
  230. self.block_sparse_moe = MixtralMoE(config=config,
  231. quant_config=quant_config)
  232. self.input_layernorm = RMSNorm(config.hidden_size,
  233. eps=config.rms_norm_eps)
  234. self.post_attention_layernorm = RMSNorm(config.hidden_size,
  235. eps=config.rms_norm_eps)
  236. def forward(
  237. self,
  238. positions: torch.Tensor,
  239. hidden_states: torch.Tensor,
  240. kv_cache: torch.Tensor,
  241. attn_metadata: AttentionMetadata,
  242. residual: Optional[torch.Tensor],
  243. ) -> torch.Tensor:
  244. # Self Attention
  245. if residual is None:
  246. residual = hidden_states
  247. hidden_states = self.input_layernorm(hidden_states)
  248. else:
  249. hidden_states, residual = self.input_layernorm(
  250. hidden_states, residual)
  251. hidden_states = self.self_attn(
  252. positions=positions,
  253. hidden_states=hidden_states,
  254. kv_cache=kv_cache,
  255. attn_metadata=attn_metadata,
  256. )
  257. # Fully Connected
  258. hidden_states, residual = self.post_attention_layernorm(
  259. hidden_states, residual)
  260. hidden_states = self.block_sparse_moe(hidden_states)
  261. return hidden_states, residual
  262. class MixtralModel(nn.Module):
  263. def __init__(
  264. self,
  265. config: MixtralConfig,
  266. cache_config: Optional[CacheConfig] = None,
  267. quant_config: Optional[QuantizationConfig] = None,
  268. ) -> None:
  269. super().__init__()
  270. self.padding_idx = config.pad_token_id
  271. self.vocab_size = config.vocab_size
  272. self.embed_tokens = VocabParallelEmbedding(
  273. config.vocab_size,
  274. config.hidden_size,
  275. )
  276. self.layers = nn.ModuleList([
  277. MixtralDecoderLayer(config,
  278. cache_config,
  279. quant_config=quant_config)
  280. for _ in range(config.num_hidden_layers)
  281. ])
  282. self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
  283. def forward(
  284. self,
  285. input_ids: torch.Tensor,
  286. positions: torch.Tensor,
  287. kv_caches: List[torch.Tensor],
  288. attn_metadata: AttentionMetadata,
  289. ) -> torch.Tensor:
  290. hidden_states = self.embed_tokens(input_ids)
  291. residual = None
  292. for i in range(len(self.layers)):
  293. layer = self.layers[i]
  294. hidden_states, residual = layer(positions, hidden_states,
  295. kv_caches[i], attn_metadata,
  296. residual)
  297. hidden_states, _ = self.norm(hidden_states, residual)
  298. return hidden_states
  299. class MixtralForCausalLM(nn.Module):
  300. fall_back_to_pt_during_load = False
  301. def __init__(
  302. self,
  303. config: MixtralConfig,
  304. cache_config: Optional[CacheConfig] = None,
  305. quant_config: Optional[QuantizationConfig] = None,
  306. ) -> None:
  307. super().__init__()
  308. self.config = config
  309. self.quant_config = quant_config
  310. self.model = MixtralModel(config, cache_config, quant_config)
  311. self.lm_head = ParallelLMHead(config.vocab_size,
  312. config.hidden_size,
  313. quant_config=quant_config)
  314. self.logits_processor = LogitsProcessor(config.vocab_size)
  315. self.sampler = Sampler()
  316. def forward(
  317. self,
  318. input_ids: torch.Tensor,
  319. positions: torch.Tensor,
  320. kv_caches: List[torch.Tensor],
  321. attn_metadata: AttentionMetadata,
  322. intermediate_tensors: Optional[IntermediateTensors] = None,
  323. ) -> torch.Tensor:
  324. hidden_states = self.model(input_ids, positions, kv_caches,
  325. attn_metadata)
  326. return hidden_states
  327. def compute_logits(self, hidden_states: torch.Tensor,
  328. sampling_metadata: SamplingMetadata) -> torch.Tensor:
  329. logits = self.logits_processor(self.lm_head, hidden_states,
  330. sampling_metadata)
  331. return logits
  332. def sample(
  333. self,
  334. logits: Optional[torch.Tensor],
  335. sampling_metadata: SamplingMetadata,
  336. ) -> Optional[SamplerOutput]:
  337. next_tokens = self.sampler(logits, sampling_metadata)
  338. return next_tokens
  339. def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
  340. stacked_params_mapping = [
  341. # (param_name, shard_name, shard_id)
  342. ("qkv_proj", "q_proj", "q"),
  343. ("qkv_proj", "k_proj", "k"),
  344. ("qkv_proj", "v_proj", "v"),
  345. ]
  346. params_dict = dict(self.named_parameters())
  347. for name, loaded_weight in weights:
  348. if "rotary_emb.inv_freq" in name:
  349. continue
  350. for (param_name, weight_name, shard_id) in stacked_params_mapping:
  351. if weight_name not in name:
  352. continue
  353. name = name.replace(weight_name, param_name)
  354. # Skip loading extra bias for GPTQ models.
  355. if name.endswith(".bias") and name not in params_dict:
  356. continue
  357. param = params_dict[name]
  358. weight_loader = param.weight_loader
  359. weight_loader(param, loaded_weight, shard_id)
  360. break
  361. else:
  362. # Skip loading extra bias for GPTQ models.
  363. if name.endswith(".bias") and name not in params_dict:
  364. continue
  365. # Skip experts that are not assigned to this worker.
  366. if ("block_sparse_moe.experts." in name
  367. and name not in params_dict):
  368. continue
  369. param = params_dict[name]
  370. weight_loader = getattr(param, "weight_loader",
  371. default_weight_loader)
  372. weight_loader(param, loaded_weight)