123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423 |
- # coding=utf-8
- from typing import Iterable, List, Optional, Tuple
- import torch
- import torch.nn as nn
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig
- from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
- from aphrodite.distributed import (get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size,
- tensor_model_parallel_all_reduce)
- from aphrodite.modeling.layers.fused_moe import fused_moe
- from aphrodite.modeling.layers.linear import (QKVParallelLinear,
- ReplicatedLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.modeling.utils import set_weight_attrs
- from aphrodite.quantization.base_config import QuantizationConfig
- from aphrodite.transformers_utils.configs.dbrx import DbrxConfig
- class DbrxRouter(nn.Module):
- """A Router implementation for DBRX that returns logits for each expert
- per token.
- """
- def __init__(
- self,
- config: DbrxConfig,
- params_dtype: Optional[torch.dtype] = None,
- ):
- super().__init__()
- self.tp_size = get_tensor_model_parallel_world_size()
- self.num_total_experts = config.ffn_config.moe_num_experts
- self.d_model = config.d_model
- self.layer = ReplicatedLinear(
- self.d_model,
- self.num_total_experts,
- bias=False,
- params_dtype=params_dtype,
- quant_config=None,
- )
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- router_logits, _ = self.layer(hidden_states)
- return router_logits
- class DbrxExperts(nn.Module):
- """A tensor-parallel MoE implementation for DBRX.
- Each expert's weights are sharded across all ranks and a fused MoE
- kernel is used for the forward pass, and finally we reduce the outputs
- across ranks.
- """
- def __init__(
- self,
- config: DbrxConfig,
- quant_config: Optional[QuantizationConfig] = None,
- params_dtype: Optional[torch.dtype] = None,
- ):
- super().__init__()
- self.tp_size = get_tensor_model_parallel_world_size()
- self.num_total_experts = config.ffn_config.moe_num_experts
- self.top_k = config.ffn_config.moe_top_k
- self.d_model = config.d_model
- self.intermediate_size = (config.ffn_config.ffn_hidden_size //
- self.tp_size)
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- self.params_dtype = params_dtype
- self.router = DbrxRouter(config, self.params_dtype)
- self.ws = nn.Parameter(
- torch.empty(
- self.num_total_experts,
- 2 * self.intermediate_size,
- self.d_model,
- device="cuda",
- dtype=self.params_dtype,
- ))
- self.w2s = nn.Parameter(
- torch.empty(
- self.num_total_experts,
- self.d_model,
- self.intermediate_size,
- device="cuda",
- dtype=self.params_dtype,
- ))
- set_weight_attrs(
- self.ws,
- {
- "weight_loader": self.weight_loader,
- },
- )
- set_weight_attrs(
- self.w2s,
- {
- "weight_loader": self.weight_loader,
- },
- )
- def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
- weight_name: str):
- tp_rank = get_tensor_model_parallel_rank()
- param_data = param.data
- shard_size = self.intermediate_size
- shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
- # DBRX uses GLU for each experts.
- # GLU has 3 linear layers: w1, v1 and w2.
- if weight_name.endswith("w1"):
- loaded_weight = torch.reshape(
- loaded_weight,
- [-1, self.intermediate_size * self.tp_size, self.d_model],
- )
- param_data[:, 0:shard_size, :] = loaded_weight[:, shard, :]
- if weight_name.endswith("v1"):
- loaded_weight = torch.reshape(
- loaded_weight,
- [-1, self.intermediate_size * self.tp_size, self.d_model],
- )
- param_data[:,
- shard_size:2 * shard_size, :] = loaded_weight[:,
- shard, :]
- if weight_name.endswith("w2"):
- loaded_weight = torch.reshape(
- loaded_weight,
- [-1, self.intermediate_size * self.tp_size, self.d_model],
- ).transpose(1, 2)
- param_data[:] = loaded_weight[:, :, shard]
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- num_tokens, hidden_size = hidden_states.shape
- hidden_states = hidden_states.view(-1, self.d_model)
- # router_logits: (num_tokens, n_experts)
- router_logits = self.router(hidden_states)
- final_hidden_states = fused_moe(
- hidden_states,
- self.ws,
- self.w2s,
- router_logits,
- self.top_k,
- renormalize=True,
- inplace=True,
- )
- if self.tp_size > 1:
- final_hidden_states = tensor_model_parallel_all_reduce(
- final_hidden_states)
- return final_hidden_states.view(num_tokens, hidden_size)
- class DbrxAttention(nn.Module):
- def __init__(
- self,
- config: DbrxConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.d_model = config.d_model
- self.total_num_heads = config.n_heads
- self.head_dim = self.d_model // self.total_num_heads
- self.total_num_kv_heads = config.attn_config.kv_n_heads
- self.clip_qkv = config.attn_config.clip_qkv
- self.rope_theta = config.attn_config.rope_theta
- self.max_position = config.max_seq_len
- # pylint: disable=invalid-name
- self.Wqkv = QKVParallelLinear(
- self.d_model,
- self.head_dim,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=False,
- quant_config=quant_config,
- )
- self.out_proj = RowParallelLinear(
- self.d_model,
- self.d_model,
- bias=False,
- quant_config=quant_config,
- )
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim,
- max_position=self.max_position,
- base=int(self.rope_theta),
- is_neox_style=True,
- )
- tp_world_size = get_tensor_model_parallel_world_size()
- self.tp_size = tp_world_size
- assert self.total_num_heads % tp_world_size == 0
- self.num_heads = self.total_num_heads // tp_world_size
- if self.total_num_kv_heads >= tp_world_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_world_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_world_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.scaling = self.head_dim**-0.5
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, _ = self.Wqkv(hidden_states)
- if self.clip_qkv is not None:
- qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- q, k = self.rotary_emb(position_ids, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- hidden_states, _ = self.out_proj(attn_output)
- return hidden_states
- class DbrxFusedNormAttention(nn.Module):
- def __init__(
- self,
- config: DbrxConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.d_model = config.d_model
- self.attn = DbrxAttention(config, cache_config, quant_config)
- self.norm_1 = nn.LayerNorm(self.d_model)
- self.norm_2 = nn.LayerNorm(self.d_model)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- residual = hidden_states
- hidden_states = self.norm_1(hidden_states)
- x = self.attn(
- position_ids=position_ids,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- hidden_states = residual + x
- residual = hidden_states
- hidden_states = self.norm_2(hidden_states)
- return hidden_states, residual
- class DbrxBlock(nn.Module):
- def __init__(
- self,
- config: DbrxConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.norm_attn_norm = DbrxFusedNormAttention(config, cache_config,
- quant_config)
- self.ffn = DbrxExperts(config, quant_config)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states, residual = self.norm_attn_norm(
- position_ids=position_ids,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- hidden_states = self.ffn(hidden_states)
- hidden_states = hidden_states + residual
- return hidden_states
- class DbrxModel(nn.Module):
- def __init__(
- self,
- config: DbrxConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.wte = VocabParallelEmbedding(
- config.vocab_size,
- config.d_model,
- )
- self.blocks = nn.ModuleList([
- DbrxBlock(config, cache_config, quant_config)
- for _ in range(config.n_layers)
- ])
- self.norm_f = nn.LayerNorm(config.d_model, eps=1e-5)
- for module in self.modules():
- if hasattr(module, "bias") and isinstance(module.bias,
- nn.Parameter):
- # Remove the bias term in Linear and LayerNorm.
- module.register_parameter("bias", None)
- def forward(
- self,
- input_ids: torch.Tensor,
- position_ids: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.wte(input_ids)
- for i in range(len(self.blocks)):
- block = self.blocks[i]
- hidden_states = block(
- position_ids,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- )
- hidden_states = self.norm_f(hidden_states)
- return hidden_states
- class DbrxForCausalLM(nn.Module):
- def __init__(
- self,
- config: DbrxConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.quant_config = quant_config
- self.unpadded_vocab_size = config.vocab_size
- self.transformer = DbrxModel(config, cache_config, quant_config)
- self.lm_head = ParallelLMHead(
- config.vocab_size,
- config.d_model,
- org_num_embeddings=config.vocab_size,
- padding_size=DEFAULT_VOCAB_PADDING_SIZE,
- quant_config=quant_config,
- )
- self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
- config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- hidden_states = self.transformer(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(self, hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata) -> torch.Tensor:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: Optional[torch.Tensor],
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- expert_params_mapping = [(
- "ws" if weight_name in ["w1", "v1"] else "w2s",
- f"experts.mlp.{weight_name}",
- ) for weight_name in ["w1", "v1", "w2"]]
- params_dict = dict(self.named_parameters(remove_duplicate=False))
- for name, loaded_weight in weights:
- for param_name, weight_name in expert_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, weight_name)
- break
- else:
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|