123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- import os
- from functools import partial
- from typing import Any, Awaitable, List, Optional, Set, Tuple, Union
- import torch
- from loguru import logger
- from aphrodite.common.config import CacheConfig, ModelConfig, SchedulerConfig
- from aphrodite.common.sequence import ExecuteModelRequest, SamplerOutput
- from aphrodite.common.utils import (get_aphrodite_instance_id,
- get_distributed_init_method, get_open_port,
- make_async)
- from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase
- from aphrodite.executor.multiproc_worker_utils import (ProcessWorkerWrapper,
- ResultHandler,
- WorkerMonitor)
- from aphrodite.lora.request import LoRARequest
- from aphrodite.prompt_adapter.request import PromptAdapterRequest
- from aphrodite.task_handler.worker_base import WorkerWrapperBase
- class CPUExecutor(ExecutorBase):
- uses_ray: bool = False
- def _init_executor(self) -> None:
- assert self.device_config.device_type == "cpu"
- assert self.lora_config is None, "cpu backend doesn't support LoRA"
- #
- # Environment variables for CPU executor
- #
- # Ensure that APHRODITE_INSTANCE_ID is set, to be inherited by workers
- os.environ["APHRODITE_INSTANCE_ID"] = get_aphrodite_instance_id()
- # Disable torch async compiling which won't work with daemonic
- # processes
- os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"
- # Intel OpenMP setting
- ld_prealod_str = os.getenv("LD_PRELOAD", "")
- if "libiomp5.so" in ld_prealod_str:
- # The time(milliseconds) that a thread should wait after
- # completing the execution of a parallel region, before sleeping.
- os.environ['KMP_BLOCKTIME'] = "1"
- # Prevents the CPU to run into low performance state
- os.environ['KMP_TPAUSE'] = "0"
- # Provides fine granularity parallelism
- os.environ['KMP_FORKJOIN_BARRIER_PATTERN'] = "dist,dist"
- os.environ['KMP_PLAIN_BARRIER_PATTERN'] = "dist,dist"
- os.environ['KMP_REDUCTION_BARRIER_PATTERN'] = "dist,dist"
- # To hint IPEX uses shared memory based AllReduce
- os.environ["LOCAL_WORLD_SIZE"] = str(
- self.parallel_config.tensor_parallel_size)
- self.model_config = _verify_and_get_model_config(self.model_config)
- self.cache_config = _verify_and_get_cache_config(self.cache_config)
- self.scheduler_config = _verify_and_get_scheduler_config(
- self.scheduler_config)
- # Multiprocessing-based executor does not support multi-node setting.
- # Since it only works for single node, we can use the loopback address
- # 127.0.0.1 for communication.
- ip = "127.0.0.1"
- port = get_open_port()
- self.distributed_init_method = get_distributed_init_method(ip, port)
- is_async = isinstance(self, CPUExecutorAsync)
- world_size = self.parallel_config.tensor_parallel_size
- result_handler = ResultHandler()
- self.parallel_worker_tasks: Optional[Union[Any, Awaitable[Any]]] = None
- self.workers = []
- if is_async:
- self.workers = [
- ProcessWorkerWrapper(
- result_handler,
- partial(
- self._create_worker,
- rank=rank,
- local_rank=rank,
- )) for rank in range(0, world_size)
- ]
- self.driver_worker = self.workers[0]
- self.workers = self.workers[1:]
- self.driver_method_invoker = _async_driver_method_invoker
- else:
- self.driver_worker = self._create_worker()
- self.driver_method_invoker = _driver_method_invoker
- if world_size != 1:
- self.workers = [
- ProcessWorkerWrapper(
- result_handler,
- partial(
- self._create_worker,
- rank=rank,
- local_rank=rank,
- )) for rank in range(1, world_size)
- ]
- if world_size != 1 or is_async:
- if is_async:
- async_worker_list = self.workers + [self.driver_worker]
- else:
- async_worker_list = self.workers
- self.worker_monitor = WorkerMonitor(async_worker_list,
- result_handler)
- result_handler.start()
- self.worker_monitor.start()
- self._run_workers("init_device")
- self._run_workers("load_model")
- def _create_worker(
- self,
- local_rank: int = 0,
- rank: int = 0,
- ):
- worker_module_name = "aphrodite.task_handler.cpu_worker"
- worker_class_name = "CPUWorker"
- wrapper = WorkerWrapperBase(
- worker_module_name=worker_module_name,
- worker_class_name=worker_class_name,
- )
- assert self.distributed_init_method is not None
- kwargs = dict(
- model_config=self.model_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config,
- device_config=self.device_config,
- cache_config=self.cache_config,
- load_config=self.load_config,
- local_rank=local_rank,
- rank=rank,
- distributed_init_method=self.distributed_init_method,
- lora_config=self.lora_config,
- multimodal_config=self.multimodal_config,
- kv_cache_dtype=self.cache_config.cache_dtype,
- prompt_adapter_config=self.prompt_adapter_config,
- is_driver_worker=rank == 0,
- )
- wrapper.init_worker(**kwargs)
- return wrapper.worker
- def _run_workers(
- self,
- method: str,
- *args,
- async_run_remote_workers_only: bool = False,
- max_concurrent_workers: Optional[int] = None,
- **kwargs,
- ) -> Any:
- """Runs the given method on all workers.
- Args:
- async_run_remote_workers_only: If True the method will be run only
- in the remote workers, not the driver worker. It will also be
- run asynchronously and return a list of futures rather than
- blocking on the results.
- """
- if max_concurrent_workers:
- raise NotImplementedError(
- "max_concurrent_workers is not supported yet.")
- # Start the workers first.
- worker_outputs = [
- worker.execute_method(method, *args, **kwargs)
- for worker in self.workers
- ]
- if async_run_remote_workers_only:
- # Just return futures
- return worker_outputs
- driver_worker_output = self.driver_method_invoker(
- self.driver_worker, method, *args, **kwargs)
- # Get the results of the workers.
- return [driver_worker_output
- ] + [output.get() for output in worker_outputs]
- def determine_num_available_blocks(self) -> Tuple[int, int]:
- """Determine the number of available KV blocks by invoking the
- underlying worker.
- """
- return self.driver_method_invoker(self.driver_worker,
- "determine_num_available_blocks")
- def initialize_cache(self, num_gpu_blocks: int,
- num_cpu_blocks: int) -> None:
- """Initialize the KV cache by invoking the underlying worker.
- """
- # NOTE: We log here to avoid multiple logs when number of workers is
- # greater than one. We could log in the engine, but not all executors
- # have GPUs.
- # NOTE: `cpu block` for CPU backend is located on CPU memory but is
- # referred as `gpu block`. Because we want to reuse the existing block
- # management procedure.
- logger.info("# CPU blocks: %d", num_gpu_blocks)
- self._run_workers("initialize_cache",
- num_gpu_blocks=num_gpu_blocks,
- num_cpu_blocks=num_cpu_blocks)
- def execute_model(
- self,
- execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
- if (self.parallel_config.tensor_parallel_size > 1
- and self.parallel_worker_tasks is None):
- self.parallel_worker_tasks = self._run_workers(
- "start_worker_execution_loop",
- async_run_remote_workers_only=True,
- )
- output = self.driver_method_invoker(self.driver_worker,
- "execute_model", execute_model_req)
- return output
- def stop_remote_worker_execution_loop(self) -> None:
- if self.parallel_worker_tasks is None:
- return
- """
- Passing None will cause the driver to stop the model execution
- loop running in each of the remote workers.
- """
- self.driver_method_invoker(self.driver_worker, "execute_model", None)
- parallel_worker_tasks = self.parallel_worker_tasks
- self.parallel_worker_tasks = None
- # Ensure that workers exit model loop cleanly
- # (this will raise otherwise)
- self._wait_for_tasks_completion(parallel_worker_tasks)
- def add_lora(self, lora_request: LoRARequest) -> bool:
- return all(self._run_workers("add_lora", lora_request))
- def remove_lora(self, lora_id: int) -> bool:
- return all(self._run_workers("remove_lora", lora_id))
- def pin_lora(self, lora_id: int) -> bool:
- assert lora_id > 0, "lora_id must be greater than 0."
- return all(self._run_workers(
- "pin_lora",
- lora_id=lora_id,
- ))
- def list_loras(self) -> Set[int]:
- return self.driver_method_invoker(self.driver_worker, "list_loras")
- def add_prompt_adapter(
- self, prompt_adapter_request: PromptAdapterRequest) -> bool:
- return all(
- self._run_workers(
- "add_prompt_adapter",
- prompt_adapter_request,
- ))
- def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
- return all(
- self._run_workers(
- "remove_prompt_adapter",
- prompt_adapter_id,
- ))
- def list_prompt_adapters(self) -> Set[int]:
- return self.driver_method_invoker(self.driver_worker,
- "list_prompt_adapters")
- def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
- return all(self._run_workers(
- "pin_prompt_adapter",
- prompt_adapter_id,
- ))
- def check_health(self) -> None:
- """Raises an error if engine is unhealthy."""
- if self.worker_monitor is not None and not self.worker_monitor.is_alive(
- ):
- raise RuntimeError("Worker processes are not running")
- def shutdown(self):
- if (worker_monitor := getattr(self, "worker_monitor",
- None)) is not None:
- worker_monitor.close()
- def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
- """Wait for futures returned from _run_workers() with
- async_run_remote_workers_only to complete."""
- for result in parallel_worker_tasks:
- result.get()
- class CPUExecutorAsync(CPUExecutor, ExecutorAsyncBase):
- async def execute_model_async(
- self,
- execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
- output = await make_async(self.execute_model
- )(execute_model_req=execute_model_req, )
- return output
- async def check_health_async(self) -> None:
- self.check_health()
- def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
- if config.dtype == torch.float16:
- logger.warning("float16 is not supported on CPU, casting to bfloat16.")
- config.dtype = torch.bfloat16
- if not config.enforce_eager:
- logger.warning(
- "CUDA graph is not supported on CPU, fallback to the eager "
- "mode.")
- config.enforce_eager = True
- return config
- def _verify_and_get_scheduler_config(
- config: SchedulerConfig) -> SchedulerConfig:
- if config.chunked_prefill_enabled:
- logger.warning("Chunked prefill is not supported on CPU, disable it.")
- config.chunked_prefill_enabled = False
- return config
- def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig:
- _GB = 1 << 30
- if config.enable_prefix_caching:
- logger.warning("Prefix caching is not supported on CPU, disable it.")
- config.enable_prefix_caching = False
- kv_cache_space_str = os.getenv("APHRODITE_CPU_KVCACHE_SPACE", "0")
- kv_cache_space = int(kv_cache_space_str)
- if kv_cache_space >= 0:
- if kv_cache_space == 0:
- config.cpu_kvcache_space_bytes = 4 * _GB # type: ignore
- logger.warning(
- "Environment variable APHRODITE_CPU_KVCACHE_SPACE (GB) "
- "for CPU backend is not set, using 4 by default.")
- else:
- config.cpu_kvcache_space_bytes = kv_cache_space * _GB # type: ignore
- else:
- raise RuntimeError(
- "Invalid environment variable APHRODITE_CPU_KVCACHE_SPACE"
- f" {kv_cache_space}, expect a positive integer value.")
- return config
- def _driver_method_invoker(driver, method: str, *args, **kwargs):
- return getattr(driver, method)(*args, **kwargs)
- def _async_driver_method_invoker(driver, method: str, *args, **kwargs):
- return driver.execute_method(method, *args, **kwargs).get()
|