serving_completions.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. import asyncio
  2. import time
  3. from typing import (AsyncGenerator, AsyncIterator, Callable, Dict, List,
  4. Optional)
  5. from typing import Sequence as GenericSequence
  6. from typing import Tuple, cast
  7. from fastapi import Request
  8. from transformers import PreTrainedTokenizer
  9. from aphrodite.common.config import ModelConfig
  10. from aphrodite.common.outputs import RequestOutput
  11. from aphrodite.common.sequence import Logprob
  12. from aphrodite.common.utils import merge_async_iterators, random_uuid
  13. from aphrodite.endpoints.logger import RequestLogger
  14. # yapf conflicts with isort for this block
  15. # yapf: disable
  16. from aphrodite.endpoints.openai.protocol import (
  17. CompletionLogProbs, CompletionRequest, CompletionResponse,
  18. CompletionResponseChoice, CompletionResponseStreamChoice,
  19. CompletionStreamResponse, UsageInfo)
  20. # yapf: enable
  21. from aphrodite.endpoints.openai.serving_engine import (LoRAModulePath,
  22. OpenAIServing,
  23. PromptAdapterPath)
  24. from aphrodite.engine.protocol import AsyncEngineClient
  25. TypeTokenIDs = List[int]
  26. TypeTopLogProbs = List[Optional[Dict[int, float]]]
  27. TypeCreateLogProbsFn = Callable[
  28. [TypeTokenIDs, TypeTopLogProbs, Optional[int], int], CompletionLogProbs]
  29. class OpenAIServingCompletion(OpenAIServing):
  30. def __init__(
  31. self,
  32. async_engine_client: AsyncEngineClient,
  33. model_config: ModelConfig,
  34. served_model_names: List[str],
  35. *,
  36. lora_modules: Optional[List[LoRAModulePath]],
  37. prompt_adapters: Optional[List[PromptAdapterPath]],
  38. request_logger: Optional[RequestLogger],
  39. return_tokens_as_token_ids: bool = False,
  40. ):
  41. super().__init__(async_engine_client=async_engine_client,
  42. model_config=model_config,
  43. served_model_names=served_model_names,
  44. lora_modules=lora_modules,
  45. prompt_adapters=prompt_adapters,
  46. request_logger=request_logger,
  47. return_tokens_as_token_ids=return_tokens_as_token_ids)
  48. async def create_completion(self, request: CompletionRequest,
  49. raw_request: Request):
  50. """Completion API similar to OpenAI's API.
  51. See https://platform.openai.com/docs/api-reference/completions/create
  52. for the API specification. This API mimics the OpenAI Completion API.
  53. NOTE: Currently we do not support the following feature:
  54. - suffix (the language models we currently support do not support
  55. suffix)
  56. """
  57. error_check_ret = await self._check_model(request)
  58. if error_check_ret is not None:
  59. return error_check_ret
  60. # Return error for unsupported features.
  61. if request.suffix is not None:
  62. return self.create_error_response(
  63. "suffix is not currently supported")
  64. model_name = self.served_model_names[0]
  65. request_id = f"cmpl-{random_uuid()}"
  66. created_time = int(time.time())
  67. # Schedule the request and get the result generator.
  68. generators: List[AsyncGenerator[RequestOutput, None]] = []
  69. try:
  70. (
  71. lora_request,
  72. prompt_adapter_request,
  73. ) = self._maybe_get_adapters(request)
  74. tokenizer = await self.async_engine_client.get_tokenizer(
  75. lora_request)
  76. guided_decode_logits_processor = (
  77. await self._guided_decode_logits_processor(request, tokenizer))
  78. prompts = list(
  79. self._tokenize_prompt_input_or_inputs(
  80. request,
  81. tokenizer,
  82. request.prompt,
  83. truncate_prompt_tokens=request.truncate_prompt_tokens,
  84. add_special_tokens=request.add_special_tokens,
  85. ))
  86. for i, prompt_inputs in enumerate(prompts):
  87. sampling_params = request.to_sampling_params(
  88. tokenizer,
  89. guided_decode_logits_processor,
  90. default_max_tokens=self.max_model_len -
  91. len(prompt_inputs["prompt_token_ids"]))
  92. request_id_item = f"{request_id}-{i}"
  93. self._log_inputs(request_id_item,
  94. prompt_inputs,
  95. params=sampling_params,
  96. lora_request=lora_request,
  97. prompt_adapter_request=prompt_adapter_request)
  98. generator = self.async_engine_client.generate(
  99. {"prompt_token_ids": prompt_inputs["prompt_token_ids"]},
  100. sampling_params,
  101. request_id_item,
  102. lora_request=lora_request,
  103. prompt_adapter_request=prompt_adapter_request,
  104. )
  105. generators.append(generator)
  106. except ValueError as e:
  107. # TODO: Use an aphrodite-specific Validation Error
  108. return self.create_error_response(str(e))
  109. result_generator: AsyncIterator[Tuple[
  110. int, RequestOutput]] = merge_async_iterators(
  111. *generators, is_cancelled=raw_request.is_disconnected)
  112. # Similar to the OpenAI API, when n != best_of, we do not stream the
  113. # results. In addition, we do not stream the results when use
  114. # beam search.
  115. stream = (request.stream
  116. and (request.best_of is None or request.n == request.best_of)
  117. and not request.use_beam_search)
  118. # Streaming response
  119. if stream:
  120. return self.completion_stream_generator(request,
  121. result_generator,
  122. request_id,
  123. created_time,
  124. model_name,
  125. num_prompts=len(prompts),
  126. tokenizer=tokenizer)
  127. # Non-streaming response
  128. final_res_batch: List[Optional[RequestOutput]] = [None] * len(prompts)
  129. try:
  130. async for i, res in result_generator:
  131. final_res_batch[i] = res
  132. for i, final_res in enumerate(final_res_batch):
  133. assert final_res is not None
  134. # The output should contain the input text
  135. # We did not pass it into Aphrodite engine to avoid being
  136. # redundant with the inputs token IDs
  137. if final_res.prompt is None:
  138. final_res.prompt = prompts[i]["prompt"]
  139. final_res_batch_checked = cast(List[RequestOutput],
  140. final_res_batch)
  141. response = self.request_output_to_completion_response(
  142. final_res_batch_checked,
  143. request,
  144. request_id,
  145. created_time,
  146. model_name,
  147. tokenizer,
  148. )
  149. except asyncio.CancelledError:
  150. return self.create_error_response("Client disconnected")
  151. except ValueError as e:
  152. # TODO: Use an aphrodite-specific Validation Error
  153. return self.create_error_response(str(e))
  154. # When user requests streaming but we don't stream, we still need to
  155. # return a streaming response with a single event.
  156. if request.stream:
  157. response_json = response.model_dump_json()
  158. async def fake_stream_generator() -> AsyncGenerator[str, None]:
  159. yield f"data: {response_json}\n\n"
  160. yield "data: [DONE]\n\n"
  161. return fake_stream_generator()
  162. return response
  163. async def completion_stream_generator(
  164. self,
  165. request: CompletionRequest,
  166. result_generator: AsyncIterator[Tuple[int, RequestOutput]],
  167. request_id: str,
  168. created_time: int,
  169. model_name: str,
  170. num_prompts: int,
  171. tokenizer: PreTrainedTokenizer,
  172. ) -> AsyncGenerator[str, None]:
  173. num_choices = 1 if request.n is None else request.n
  174. previous_texts = [""] * num_choices * num_prompts
  175. previous_num_tokens = [0] * num_choices * num_prompts
  176. has_echoed = [False] * num_choices * num_prompts
  177. try:
  178. async for prompt_idx, res in result_generator:
  179. for output in res.outputs:
  180. i = output.index + prompt_idx * num_choices
  181. # TODO: optimize the performance by avoiding full
  182. # text O(n^2) sending.
  183. assert request.max_tokens is not None
  184. if request.echo and request.max_tokens == 0:
  185. # only return the prompt
  186. delta_text = res.prompt
  187. delta_token_ids = res.prompt_token_ids
  188. out_logprobs = res.prompt_logprobs
  189. has_echoed[i] = True
  190. elif (request.echo and request.max_tokens > 0
  191. and not has_echoed[i]):
  192. # echo the prompt and first token
  193. delta_text = res.prompt + output.text
  194. delta_token_ids = (res.prompt_token_ids +
  195. output.token_ids)
  196. out_logprobs = res.prompt_logprobs + (output.logprobs
  197. or [])
  198. has_echoed[i] = True
  199. else:
  200. # return just the delta
  201. delta_text = output.text[len(previous_texts[i]):]
  202. delta_token_ids = output.token_ids[
  203. previous_num_tokens[i]:]
  204. out_logprobs = output.logprobs[previous_num_tokens[
  205. i]:] if output.logprobs else None
  206. if request.logprobs is not None:
  207. assert out_logprobs is not None, (
  208. "Did not output logprobs")
  209. logprobs = self._create_completion_logprobs(
  210. token_ids=delta_token_ids,
  211. top_logprobs=out_logprobs,
  212. num_output_top_logprobs=request.logprobs,
  213. tokenizer=tokenizer,
  214. initial_text_offset=len(previous_texts[i]),
  215. )
  216. else:
  217. logprobs = None
  218. previous_texts[i] = output.text
  219. previous_num_tokens[i] = len(output.token_ids)
  220. finish_reason = output.finish_reason
  221. stop_reason = output.stop_reason
  222. chunk = CompletionStreamResponse(
  223. id=request_id,
  224. created=created_time,
  225. model=model_name,
  226. choices=[
  227. CompletionResponseStreamChoice(
  228. index=i,
  229. text=delta_text,
  230. logprobs=logprobs,
  231. finish_reason=finish_reason,
  232. stop_reason=stop_reason,
  233. )
  234. ])
  235. if (request.stream_options
  236. and request.stream_options.include_usage):
  237. if (request.stream_options.continuous_usage_stats
  238. or output.finish_reason is not None):
  239. prompt_tokens = len(res.prompt_token_ids)
  240. completion_tokens = len(output.token_ids)
  241. usage = UsageInfo(
  242. prompt_tokens=prompt_tokens,
  243. completion_tokens=completion_tokens,
  244. total_tokens=prompt_tokens + completion_tokens,
  245. )
  246. if request.stream_options.continuous_usage_stats:
  247. chunk.usage = usage
  248. else:
  249. chunk.usage = None
  250. response_json = chunk.model_dump_json(exclude_unset=False)
  251. yield f"data: {response_json}\n\n"
  252. if (request.stream_options
  253. and request.stream_options.include_usage):
  254. final_usage_chunk = CompletionStreamResponse(
  255. id=request_id,
  256. created=created_time,
  257. model=model_name,
  258. choices=[],
  259. usage=usage,
  260. )
  261. final_usage_data = (final_usage_chunk.model_dump_json(
  262. exclude_unset=False, exclude_none=True))
  263. yield f"data: {final_usage_data}\n\n"
  264. except ValueError as e:
  265. # TODO: Use an aphrodite-specific Validation Error
  266. data = self.create_streaming_error_response(str(e))
  267. yield f"data: {data}\n\n"
  268. yield "data: [DONE]\n\n"
  269. def request_output_to_completion_response(
  270. self,
  271. final_res_batch: List[RequestOutput],
  272. request: CompletionRequest,
  273. request_id: str,
  274. created_time: int,
  275. model_name: str,
  276. tokenizer: PreTrainedTokenizer,
  277. ) -> CompletionResponse:
  278. choices: List[CompletionResponseChoice] = []
  279. num_prompt_tokens = 0
  280. num_generated_tokens = 0
  281. for final_res in final_res_batch:
  282. prompt_token_ids = final_res.prompt_token_ids
  283. prompt_logprobs = final_res.prompt_logprobs
  284. prompt_text = final_res.prompt
  285. for output in final_res.outputs:
  286. assert request.max_tokens is not None
  287. if request.echo and request.max_tokens == 0:
  288. token_ids = prompt_token_ids
  289. out_logprobs = prompt_logprobs
  290. output_text = prompt_text
  291. elif request.echo and request.max_tokens > 0:
  292. token_ids = prompt_token_ids + list(output.token_ids)
  293. out_logprobs = (prompt_logprobs + output.logprobs
  294. if request.logprobs is not None else None)
  295. output_text = prompt_text + output.text
  296. else:
  297. token_ids = output.token_ids
  298. out_logprobs = output.logprobs
  299. output_text = output.text
  300. if request.logprobs is not None:
  301. assert out_logprobs is not None, "Did not output logprobs"
  302. logprobs = self._create_completion_logprobs(
  303. token_ids=token_ids,
  304. top_logprobs=out_logprobs,
  305. tokenizer=tokenizer,
  306. num_output_top_logprobs=request.logprobs,
  307. )
  308. else:
  309. logprobs = None
  310. choice_data = CompletionResponseChoice(
  311. index=len(choices),
  312. text=output_text,
  313. logprobs=logprobs,
  314. finish_reason=output.finish_reason,
  315. stop_reason=output.stop_reason,
  316. )
  317. choices.append(choice_data)
  318. num_prompt_tokens += len(prompt_token_ids)
  319. num_generated_tokens += sum(
  320. len(output.token_ids) for output in final_res.outputs)
  321. usage = UsageInfo(
  322. prompt_tokens=num_prompt_tokens,
  323. completion_tokens=num_generated_tokens,
  324. total_tokens=num_prompt_tokens + num_generated_tokens,
  325. )
  326. return CompletionResponse(
  327. id=request_id,
  328. created=created_time,
  329. model=model_name,
  330. choices=choices,
  331. usage=usage,
  332. )
  333. def _create_completion_logprobs(
  334. self,
  335. token_ids: GenericSequence[int],
  336. top_logprobs: GenericSequence[Optional[Dict[int, Logprob]]],
  337. num_output_top_logprobs: int,
  338. tokenizer: PreTrainedTokenizer,
  339. initial_text_offset: int = 0,
  340. ) -> CompletionLogProbs:
  341. """Create logprobs for OpenAI Completion API."""
  342. out_text_offset: List[int] = []
  343. out_token_logprobs: List[Optional[float]] = []
  344. out_tokens: List[str] = []
  345. out_top_logprobs: List[Optional[Dict[str, float]]] = []
  346. last_token_len = 0
  347. for i, token_id in enumerate(token_ids):
  348. step_top_logprobs = top_logprobs[i]
  349. if step_top_logprobs is None:
  350. token = tokenizer.decode(token_id)
  351. if self.return_tokens_as_token_ids:
  352. token = f"token_id:{token_id}"
  353. out_tokens.append(token)
  354. out_token_logprobs.append(None)
  355. out_top_logprobs.append(None)
  356. else:
  357. token = self._get_decoded_token(
  358. step_top_logprobs[token_id],
  359. token_id,
  360. tokenizer,
  361. return_as_token_id=self.return_tokens_as_token_ids)
  362. token_logprob = max(step_top_logprobs[token_id].logprob,
  363. -9999.0)
  364. out_tokens.append(token)
  365. out_token_logprobs.append(token_logprob)
  366. # makes sure to add the top num_output_top_logprobs + 1
  367. # logprobs, as defined in the openai API
  368. # (cf. https://github.com/openai/openai-openapi/blob/
  369. # 893ba52242dbd5387a97b96444ee1c742cfce9bd/openapi.yaml#L7153)
  370. out_top_logprobs.append({
  371. # Convert float("-inf") to the
  372. # JSON-serializable float that OpenAI uses
  373. self._get_decoded_token(
  374. top_lp[1],
  375. top_lp[0],
  376. tokenizer,
  377. return_as_token_id=self.return_tokens_as_token_ids):
  378. max(top_lp[1].logprob, -9999.0)
  379. for i, top_lp in enumerate(step_top_logprobs.items())
  380. if num_output_top_logprobs >= i
  381. })
  382. if len(out_text_offset) == 0:
  383. out_text_offset.append(initial_text_offset)
  384. else:
  385. out_text_offset.append(out_text_offset[-1] + last_token_len)
  386. last_token_len = len(token)
  387. return CompletionLogProbs(
  388. text_offset=out_text_offset,
  389. token_logprobs=out_token_logprobs,
  390. tokens=out_tokens,
  391. top_logprobs=out_top_logprobs,
  392. )