123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 |
- # The CLI entrypoint to Aphrodite.
- import argparse
- import asyncio
- import os
- import signal
- import subprocess
- import sys
- from typing import Optional
- import yaml
- from openai import OpenAI
- from aphrodite.common.utils import FlexibleArgumentParser
- from aphrodite.endpoints.openai.api_server import run_server
- from aphrodite.endpoints.openai.args import make_arg_parser
- def registrer_signal_handlers():
- def signal_handler(sig, frame):
- sys.exit(0)
- signal.signal(signal.SIGINT, signal_handler)
- signal.signal(signal.SIGTSTP, signal_handler)
- def serve(args: argparse.Namespace) -> None:
- # EngineArgs expects the model name to be passed as --model.
- args.model = args.model_tag
- asyncio.run(run_server(args))
- def interactive_cli(args: argparse.Namespace) -> None:
- registrer_signal_handlers()
- base_url = args.url
- api_key = args.api_key or os.environ.get("OPENAI_API_KEY", "EMPTY")
- openai_client = OpenAI(api_key=api_key, base_url=base_url)
- if args.model_name:
- model_name = args.model_name
- else:
- available_models = openai_client.models.list()
- model_name = available_models.data[0].id
- print(f"Using model: {model_name}")
- if args.command == "complete":
- complete(model_name, openai_client)
- elif args.command == "chat":
- chat(args.system_prompt, model_name, openai_client)
- def complete(model_name: str, client: OpenAI) -> None:
- print("Please enter prompt to complete:")
- while True:
- input_prompt = input("> ")
- completion = client.completions.create(model=model_name,
- prompt=input_prompt)
- output = completion.choices[0].text
- print(output)
- def chat(system_prompt: Optional[str], model_name: str,
- client: OpenAI) -> None:
- conversation = []
- if system_prompt is not None:
- conversation.append({"role": "system", "content": system_prompt})
- print("Please enter a message for the chat model:")
- while True:
- input_message = input("> ")
- message = {"role": "user", "content": input_message}
- conversation.append(message)
- chat_completion = client.chat.completions.create(model=model_name,
- messages=conversation)
- response_message = chat_completion.choices[0].message
- output = response_message.content
- conversation.append(response_message)
- print(output)
- STR_BOOLS = ['enforce_eager', 'enable_chunked_prefill']
- ADAPTERS = ['lora_modules', 'prompt_adapters']
- # TODO: refactor this to directly call run_server with the config file
- def serve_yaml(args: argparse.Namespace) -> None:
- def append_cmd_args(cmd, key, value):
- if value: # Skip appending if value is empty
- if key in ADAPTERS and isinstance(value, list):
- adapters = [f"{k}={v}" for k, v in value[0].items() if v]
- if adapters:
- cmd.append(f"--{key}")
- cmd.extend(adapters)
- else:
- cmd.append(f"--{key}")
- if isinstance(value, bool):
- if key in STR_BOOLS:
- cmd.append(str(value).lower())
- elif value:
- cmd.append(str(value))
- else:
- cmd.append(str(value))
- with open(args.config_file, 'r') as f:
- config = yaml.safe_load(f)
- cmd = ["python", "-m", "aphrodite.endpoints.openai.api_server"]
- for key, value in config.items():
- if isinstance(value, list):
- for item in value:
- for sub_key, sub_value in item.items():
- append_cmd_args(cmd, sub_key, sub_value)
- else:
- append_cmd_args(cmd, key, value)
- process = subprocess.Popen(cmd)
- try:
- process.wait()
- except KeyboardInterrupt:
- process.terminate()
- process.wait()
- def _add_query_options(
- parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
- parser.add_argument(
- "--url",
- type=str,
- default="http://localhost:2242/v1",
- help="url of the running OpenAI-Compatible RESTful API server")
- parser.add_argument(
- "--model-name",
- type=str,
- default=None,
- help=("The model name used in prompt completion, default to "
- "the first model in list models API call."))
- parser.add_argument(
- "--api-key",
- type=str,
- default=None,
- help=(
- "API key for OpenAI services. If provided, this api key "
- "will overwrite the api key obtained through environment variables."
- ))
- return parser
- def main():
- parser = FlexibleArgumentParser(description="Aphrodite CLI")
- subparsers = parser.add_subparsers(required=True)
- serve_parser = subparsers.add_parser(
- "run",
- help="Start the Aphrodite OpenAI Compatible API server",
- usage="aphrodite run <model_tag> [options]")
- serve_parser.add_argument("model_tag",
- type=str,
- help="The model tag to serve")
- serve_parser = make_arg_parser(serve_parser)
- serve_parser.set_defaults(dispatch_function=serve)
- complete_parser = subparsers.add_parser(
- "complete",
- help=("Generate text completions based on the given prompt "
- "via the running API server"),
- usage="aphrodite complete [options]")
- _add_query_options(complete_parser)
- complete_parser.set_defaults(dispatch_function=interactive_cli,
- command="complete")
- chat_parser = subparsers.add_parser(
- "chat",
- help="Generate chat completions via the running API server",
- usage="aphrodite chat [options]")
- _add_query_options(chat_parser)
- chat_parser.add_argument(
- "--system-prompt",
- type=str,
- default=None,
- help=("The system prompt to be added to the chat template, "
- "used for models that support system prompts."))
- chat_parser.set_defaults(dispatch_function=interactive_cli, command="chat")
- yaml_parser = subparsers.add_parser(
- "yaml",
- help="Start the Aphrodite OpenAI Compatible API server with a YAML "
- "config file",
- usage="aphrodite yaml <config.yaml>")
- yaml_parser.add_argument("config_file",
- type=str,
- help="The YAML configuration file to use")
- yaml_parser.set_defaults(dispatch_function=serve_yaml)
- args = parser.parse_args()
- # One of the sub commands should be executed.
- if hasattr(args, "dispatch_function"):
- args.dispatch_function(args)
- else:
- parser.print_help()
- if __name__ == "__main__":
- main()
|