123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- from typing import TYPE_CHECKING, Dict, List, Type, TypeVar, Union
- import numpy as np
- import torch
- from aphrodite.attention import AttentionMetadata, AttentionMetadataBuilder
- from aphrodite.common.utils import async_tensor_h2d, make_tensor_with_pad
- # Error string(s) for encoder/decoder
- # unsupported attention scenarios
- STR_NOT_IMPL_ENC_DEC_ROCM_HIP = ("ROCm/HIP is not currently supported "
- "with encoder/decoder models.")
- PAD_SLOT_ID = -1
- # Switch to numpy implementation of compute_slot_mapping
- # if we have at least this many elements. Could be tuned further.
- _COMPUTE_SLOT_MAPPING_NUMPY_NUMEL = 256
- if TYPE_CHECKING:
- from aphrodite.task_handler.model_runner import ModelInputForGPUBuilder
- def is_block_tables_empty(block_tables: Union[None, Dict]):
- """
- Check if block_tables is None or a dictionary with all None values.
- """
- if block_tables is None:
- return True
- if isinstance(block_tables, dict) and all(
- value is None for value in block_tables.values()):
- return True
- return False
- def compute_slot_mapping_start_idx(is_prompt: bool, query_len: int,
- context_len: int, sliding_window: int,
- use_v2_block_manager: bool):
- """
- Compute the start index of slot mapping.
- """
- start_idx = 0
- if is_prompt and sliding_window is not None:
- assert use_v2_block_manager or context_len == 0, (
- "Prefix caching is currently not supported with "
- "sliding window attention in V1 block manager")
- # When prefill, we use it to not write slots to kv cache
- # to save memory.
- start_idx = max(0, query_len - sliding_window)
- return start_idx
- def _compute_slot_mapping_python(slot_mapping: List[int],
- block_table: List[int], range_start: int,
- range_end: int, block_size: int):
- for i in range(range_start, range_end):
- block_number = block_table[i // block_size]
- block_offset = i % block_size
- slot = block_number * block_size + block_offset
- slot_mapping.append(slot)
- def _compute_slot_mapping_numpy(slot_mapping: List[int],
- block_table: List[int], range_start: int,
- range_end: int, block_size: int):
- block_table_array = np.array(block_table)
- idx = np.arange(range_start, range_end)
- block_offset = idx % block_size
- idx //= block_size
- seq_slot_mapping_array = block_table_array[idx]
- seq_slot_mapping_array *= block_size
- seq_slot_mapping_array += block_offset
- slot_mapping.extend(seq_slot_mapping_array)
- def compute_slot_mapping(is_profile_run: bool, slot_mapping: List[int],
- seq_id: int, seq_len: int, context_len: int,
- start_idx: int, block_size: int,
- block_tables: Dict[int, List[int]]):
- """
- Compute slot mapping.
- """
- if is_profile_run:
- # During memory profiling, the block tables are not
- # initialized yet. In this case, we just use a dummy
- # slot mapping.
- # In embeddings, the block tables are {seq_id: None}.
- slot_mapping.extend([PAD_SLOT_ID] * seq_len)
- return
- # Mask the [0, start_idx) tokens of the prompt with
- # PAD_SLOT_ID, where start_idx is max(0, seq_len -
- # sliding_window). For example, if the prompt len is 10,
- # sliding window is 8, and block size is 4, the first two
- # tokens are masked and the slot mapping will be
- # [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
- padding_mask_len = max(0, start_idx - context_len)
- slot_mapping.extend([PAD_SLOT_ID] * padding_mask_len)
- range_start = max(start_idx, context_len)
- range_end = seq_len
- numel = range_end - range_start
- block_table = block_tables[seq_id]
- # numpy implementation will be faster than python if we have
- # many elements, otherwise it will be slower.
- if numel < _COMPUTE_SLOT_MAPPING_NUMPY_NUMEL:
- _compute_slot_mapping_python(slot_mapping, block_table, range_start,
- range_end, block_size)
- else:
- _compute_slot_mapping_numpy(slot_mapping, block_table, range_start,
- range_end, block_size)
- TAttentionMetadata = TypeVar("TAttentionMetadata", bound='AttentionMetadata')
- class CommonMetadataBuilder(AttentionMetadataBuilder[TAttentionMetadata]):
- _metadata_cls: Type[TAttentionMetadata]
- def __init__(self, input_builder: "ModelInputForGPUBuilder"):
- self.slot_mapping: List[int] = []
- self.prefill_seq_lens: List[int] = []
- self.context_lens: List[int] = []
- self.block_tables: List[List[int]] = []
- self.curr_seq_lens: List[int] = []
- self.num_prefills = 0
- self.num_prefill_tokens = 0
- self.num_decode_tokens = 0
- self.input_builder = input_builder
- self.runner = input_builder.runner
- self.sliding_window = input_builder.sliding_window
- self.block_size = input_builder.block_size
- self.use_v2_block_manager = (
- input_builder.scheduler_config.use_v2_block_manager)
- def _add_seq_group(
- self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
- chunked_prefill_enabled: bool):
- is_prompt = inter_data.is_prompt
- block_tables = inter_data.block_tables
- computed_block_nums = inter_data.computed_block_nums
- for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
- curr_sliding_window_block) in zip(
- inter_data.seq_ids, [len(t) for t in inter_data.input_tokens],
- inter_data.orig_seq_lens, inter_data.seq_lens,
- inter_data.query_lens, inter_data.context_lens,
- inter_data.curr_sliding_window_blocks):
- self.context_lens.append(context_len)
- if is_prompt:
- self.num_prefills += 1
- self.num_prefill_tokens += token_len
- self.prefill_seq_lens.append(seq_len)
- else:
- assert query_len == 1, (
- "seq_len: {}, context_len: {}, query_len: {}".format(
- seq_len, context_len, query_len))
- self.num_decode_tokens += query_len
- self.curr_seq_lens.append(curr_seq_len)
- # Compute block table.
- # TODO: Combine chunked prefill and prefix caching by
- # only allowing multiple of block_size chunk size.
- # NOTE: This only works for oooooooxxx style attention.
- block_table = []
- if inter_data.prefix_cache_hit:
- block_table = computed_block_nums
- elif ((chunked_prefill_enabled or not is_prompt)
- and block_tables is not None):
- block_table = block_tables[seq_id][-curr_sliding_window_block:]
- self.block_tables.append(block_table)
- # Compute slot mapping.
- is_profile_run = is_block_tables_empty(block_tables)
- start_idx = compute_slot_mapping_start_idx(
- is_prompt, query_len, context_len, self.sliding_window,
- self.use_v2_block_manager)
- compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
- seq_len, context_len, start_idx,
- self.block_size, inter_data.block_tables)
- def build(self, seq_lens: List[int], query_lens: List[int],
- cuda_graph_pad_size: int, batch_size: int):
- """Build attention metadata with on-device tensors.
- Args:
- seq_lens: The maybe padded sequence lengths of the input sequences.
- query_lens: The query lengths of the input sequences.
- cuda_graph_pad_size: The padding size for cuda graph.
- -1 if cuda graph is not used.
- batch_size: The maybe padded batch size.
- """
- for inter_data in self.input_builder.inter_data_list:
- self._add_seq_group(inter_data,
- self.input_builder.chunked_prefill_enabled)
- device = self.runner.device
- use_captured_graph = cuda_graph_pad_size != -1
- max_query_len = max(query_lens)
- max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
- max_decode_seq_len = max(self.curr_seq_lens, default=0)
- num_decode_tokens = self.num_decode_tokens
- if use_captured_graph:
- self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
- self.block_tables.extend([] * cuda_graph_pad_size)
- num_decode_tokens = batch_size
- # The shape of graph_block_tables is
- # [max batch size, max context len // block size].
- input_block_tables = self.runner.graph_block_tables[:batch_size]
- for i, block_table in enumerate(self.block_tables):
- if block_table:
- input_block_tables[i, :len(block_table)] = block_table
- block_tables = torch.from_numpy(input_block_tables).to(
- device, non_blocking=True)
- else:
- block_tables = make_tensor_with_pad(
- self.block_tables,
- pad=0,
- dtype=torch.int,
- device=device,
- )
- assert max_query_len > 0, "query_lens: {}".format(query_lens)
- assert device is not None
- context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int,
- device, self.runner.pin_memory)
- seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
- self.runner.pin_memory)
- query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device,
- self.runner.pin_memory)
- slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
- device, self.runner.pin_memory)
- query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
- dtype=torch.int32,
- device=device)
- seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
- dtype=torch.int32,
- device=device)
- torch.cumsum(seq_lens_tensor,
- dim=0,
- dtype=seq_start_loc.dtype,
- out=seq_start_loc[1:])
- torch.cumsum(query_lens_tensor,
- dim=0,
- dtype=query_start_loc.dtype,
- out=query_start_loc[1:])
- return self._metadata_cls( # type: ignore
- num_prefills=self.num_prefills,
- slot_mapping=slot_mapping_tensor,
- num_prefill_tokens=self.num_prefill_tokens,
- num_decode_tokens=num_decode_tokens,
- seq_lens=seq_lens,
- seq_lens_tensor=seq_lens_tensor,
- max_query_len=max_query_len,
- max_prefill_seq_len=max_prefill_seq_len,
- max_decode_seq_len=max_decode_seq_len,
- query_start_loc=query_start_loc,
- seq_start_loc=seq_start_loc,
- context_lens_tensor=context_lens_tensor,
- block_tables=block_tables,
- use_cuda_graph=use_captured_graph,
- )
|