123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- # yapf: disable
- # ruff: noqa: E501
- # coding=utf-8
- # Copied from
- # https://huggingface.co/Snowflake/snowflake-arctic-instruct/blob/main/configuration_arctic.py
- """ Arctic model configuration"""
- from dataclasses import asdict, dataclass
- from typing import Any, Dict
- from transformers.configuration_utils import PretrainedConfig
- from transformers.utils import logging
- logger = logging.get_logger(__name__)
- ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP = {
- "arctic": "https://huggingface.co/Snowflake/snowflake-arctic-instruct/tree/main/config.json",
- }
- @dataclass
- class ArcticLoraConfig:
- lora_r: int = 64
- lora_alpha: float = 16
- shard_base_weights: bool = False
- @dataclass
- class ArcticQuantizationConfig:
- q_bits: int = 8
- rounding: str = "nearest"
- mantissa_bits: int = 3
- group_size: int = 128
- class ArcticConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`ArcticModel`]. It is used to instantiate an
- Arctic model according to the specified arguments, defining the model architecture. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the #TODO(rsamdani): add what model has the default config..
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 32000):
- Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`ArcticModel`]
- hidden_size (`int`, *optional*, defaults to 4096):
- Dimension of the hidden representations.
- intermediate_size (`int`, *optional*, defaults to 14336):
- Dimension of the MLP representations.
- num_hidden_layers (`int`, *optional*, defaults to 32):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 32):
- Number of attention heads for each attention layer in the Transformer encoder.
- num_key_value_heads (`int`, *optional*, defaults to 8):
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
- by meanpooling all the original heads within that group. For more details checkout [this
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
- The non-linear activation function (function or string) in the decoder.
- max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
- The maximum sequence length that this model might ever be used with. Arctic's sliding window attention
- allows sequence of up to 4096*32 tokens.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- rms_norm_eps (`float`, *optional*, defaults to 1e-05):
- The epsilon used by the rms normalization layers.
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models). Only
- relevant if `config.is_decoder=True`.
- pad_token_id (`int`, *optional*):
- The id of the padding token.
- bos_token_id (`int`, *optional*, defaults to 1):
- The id of the "beginning-of-sequence" token.
- eos_token_id (`int`, *optional*, defaults to 2):
- The id of the "end-of-sequence" token.
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
- Whether the model's input and output word embeddings should be tied.
- rope_theta (`float`, *optional*, defaults to 1000000.0):
- The base period of the RoPE embeddings.
- sliding_window (`int`, *optional*):
- Sliding window attention window size. If not specified, will default to `4096`.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- num_experts_per_tok (`int`, *optional*, defaults to 2):
- The number of experts to root per-token, can be also interpreted as the `top-p` routing
- parameter
- num_local_experts (`int`, *optional*, defaults to 8):
- Number of experts per Sparse MLP layer.
- router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
- The aux loss factor for the total loss.
- ```python
- >>> from transformers import ArcticModel, ArcticConfig
- >>> # Initializing a Arctic 7B style configuration TODO(rsamdani): verify which model does the default configuration correspond to.
- >>> configuration = ArcticConfig()
- >>> # Initializing a model from the Arctic 7B style configuration
- >>> model = ArcticModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "arctic"
- keys_to_ignore_at_inference = ["past_key_values"]
- def __init__(
- self,
- vocab_size=32000,
- hidden_size=4096,
- intermediate_size=14336,
- num_hidden_layers=32,
- num_attention_heads=32,
- num_key_value_heads=None,
- hidden_act="silu",
- max_position_embeddings=4096,
- initializer_range=0.02,
- rms_norm_eps=1e-5,
- use_cache=True,
- pad_token_id=None,
- bos_token_id=1,
- eos_token_id=2,
- tie_word_embeddings=False,
- rope_theta=1e6,
- sliding_window=None,
- attention_dropout=0.0,
- num_experts_per_tok=1,
- num_local_experts=8,
- router_aux_loss_coef=0.001,
- moe_layer_frequency=2,
- parallel_attn_mlp_res=False,
- moe_train_capacity_factor=1,
- moe_eval_capacity_factor=1,
- enable_expert_tensor_parallelism=False,
- moe_min_capacity=0,
- moe_token_dropping=True,
- quantization=None,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.max_position_embeddings = max_position_embeddings
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.sliding_window = sliding_window
- # for backward compatibility
- if num_key_value_heads is None:
- num_key_value_heads = num_attention_heads
- self.num_key_value_heads = num_key_value_heads
- self.hidden_act = hidden_act
- self.initializer_range = initializer_range
- self.rms_norm_eps = rms_norm_eps
- self.use_cache = use_cache
- self.rope_theta = rope_theta
- self.attention_dropout = attention_dropout
- self.num_experts_per_tok = num_experts_per_tok
- self.num_local_experts = num_local_experts
- self.router_aux_loss_coef = router_aux_loss_coef
- self.moe_layer_frequency = moe_layer_frequency
- self.moe_train_capacity_factor = moe_train_capacity_factor
- self.moe_eval_capacity_factor = moe_eval_capacity_factor
- self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism
- self.moe_min_capacity = moe_min_capacity
- self.moe_token_dropping = moe_token_dropping
- self.parallel_attn_mlp_res = parallel_attn_mlp_res
- if isinstance(quantization, dict):
- self.quantization = ArcticQuantizationConfig(**quantization)
- else:
- self.quantization = quantization
- super().__init__(
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- tie_word_embeddings=tie_word_embeddings,
- **kwargs,
- )
- @classmethod
- def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "ArcticConfig":
- result = super().from_dict(config_dict, **kwargs)
- config = result[0] if isinstance(result, tuple) else result
- if isinstance(config.quantization, dict):
- config.quantization = ArcticQuantizationConfig(**config.quantization)
- return result
- def to_dict(self) -> Dict[str, Any]:
- ret = super().to_dict()
- if isinstance(ret["quantization"], ArcticQuantizationConfig):
- ret["quantization"] = asdict(ret["quantization"])
- return ret
|