123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 |
- from typing import List, Optional
- import torch
- from loguru import logger
- from aphrodite import _custom_ops as ops
- try:
- from aphrodite.attention.backends.flash_attn import FlashAttentionMetadata
- except ModuleNotFoundError:
- # aphrodite_flash_attn is not installed, use the identical ROCm FA metadata
- from aphrodite.attention.backends.rocm_flash_attn import (
- ROCmFlashAttentionMetadata as FlashAttentionMetadata)
- try:
- from flashinfer import BatchDecodeWithPagedKVCacheWrapper
- from flashinfer.decode import CUDAGraphBatchDecodeWithPagedKVCacheWrapper
- from flashinfer.prefill import BatchPrefillWithPagedKVCacheWrapper
- FLASHINFER_WORKSPACE_BUFFER_SIZE = 256 * 1024 * 1024
- except ImportError:
- BatchDecodeWithPagedKVCacheWrapper = None
- CUDAGraphBatchDecodeWithPagedKVCacheWrapper = None
- BatchPrefillWithPagedKVCacheWrapper = None
- FLASHINFER_WORKSPACE_BUFFER_SIZE = 0
- from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig,
- LoRAConfig, ModelConfig, ParallelConfig,
- PromptAdapterConfig, SchedulerConfig)
- from aphrodite.common.sequence import (ExecuteModelRequest,
- IntermediateTensors, SamplerOutput)
- from aphrodite.multimodal import MultiModalInputs
- from aphrodite.task_handler.model_runner import (
- ModelInputForGPUWithSamplingMetadata, ModelRunner)
- # A flag to enable debug prints for the updated input tensors
- # before each step.
- debug_advance_input = False
- # A flag to allow GPU advance step for draft model runner.
- # Set to False for debugging.
- allow_gpu_advance_step = True
- class TP1DraftModelRunner(ModelRunner):
- """Specialized model runner for speculative decoding draft model.
- Since the draft model always execute k forward passes consecutively to
- generate k speculative tokens in a single speculative decoding step,
- we could get rid of most CPU-GPU synchronization and data transfer
- overheads by keeping model input and output tensors on GPU all the time.
- TODOs:
- 1. Currently supports only flash-attn, add support for other attn_backends.
- 2. Support TP > 1 (this requires some designs because we do not expect
- any broadcasting inside execute_model).
- """
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- cache_config: CacheConfig,
- load_config: LoadConfig,
- lora_config: Optional[LoRAConfig],
- kv_cache_dtype: Optional[str] = "auto",
- is_driver_worker: bool = False,
- prompt_adapter_config: Optional[PromptAdapterConfig] = None,
- return_hidden_states: bool = False,
- **kwargs, # for uneven TP
- ):
- if return_hidden_states:
- raise ValueError(
- "return_hidden_states is not supported for TP1DraftModelRunner."
- )
- super().__init__(
- model_config=model_config,
- parallel_config=parallel_config,
- scheduler_config=scheduler_config,
- device_config=device_config,
- cache_config=cache_config,
- load_config=load_config,
- lora_config=lora_config,
- kv_cache_dtype=kv_cache_dtype,
- is_driver_worker=is_driver_worker,
- prompt_adapter_config=prompt_adapter_config,
- return_hidden_states=return_hidden_states,
- **kwargs,
- )
- self.flashinfer_decode_workspace_buffer = None
- self.flashinfer_decode_wrapper = None
- self.flashinfer_prefill_workspace_buffer = None
- self.flashinfer_prefill_wrapper = None
- def _update_sampling_metadata(self, sampling_metadata, num_seqs,
- num_queries):
- assert sampling_metadata.num_prompts == 0
- assert len(sampling_metadata.seq_groups) == num_queries
- assert sampling_metadata.selected_token_indices.shape == (
- num_queries, )
- # assert sampling_metadata.categorized_sample_indices == TODO: Add if needed # noqa: E501
- # Verify that all sequences are decodes
- for i in range(num_queries):
- seq_group = sampling_metadata.seq_groups[i]
- assert seq_group.is_prompt is False # No prompt
- assert seq_group.prompt_logprob_indices == [] # No prompt
- assert seq_group.sample_indices == [i] # Simple
- assert seq_group.seq_len is None # Decode
- assert seq_group.query_len is None # Decode
- def _gpu_advance_step(
- self, model_input: ModelInputForGPUWithSamplingMetadata,
- last_output: SamplerOutput
- ) -> ModelInputForGPUWithSamplingMetadata:
- # Currently, we expect "decode mode" only
- assert not model_input.is_prompt
- # Get num_seqs
- num_seqs = len(model_input.seq_lens)
- num_queries = len(model_input.query_lens)
- # Get output tokens GPU tensor
- sampled_token_ids = last_output.sampled_token_ids
- assert sampled_token_ids is not None
- # Update attn_metadata
- attn_metadata = model_input.attn_metadata
- assert isinstance(attn_metadata, FlashAttentionMetadata)
- attn_metadata.advance_step(num_seqs, num_queries)
- # Update GPU tensors
- ops.advance_step(num_seqs=num_seqs,
- num_queries=num_queries,
- block_size=self.block_size,
- input_tokens=model_input.input_tokens,
- sampled_token_ids=sampled_token_ids,
- input_positions=model_input.input_positions,
- seq_lens=attn_metadata.seq_lens_tensor,
- slot_mapping=attn_metadata.slot_mapping,
- block_tables=attn_metadata.block_tables)
- # Update sampling_metadata
- sampling_metadata = model_input.sampling_metadata
- self._update_sampling_metadata(sampling_metadata, num_seqs,
- num_queries)
- # Create new input
- new_model_input = self._model_input_cls(
- input_tokens=model_input.input_tokens,
- input_positions=model_input.input_positions,
- attn_metadata=attn_metadata,
- seq_lens=attn_metadata.seq_lens,
- query_lens=model_input.query_lens,
- lora_mapping=model_input.lora_mapping,
- lora_requests=model_input.lora_requests,
- multi_modal_kwargs=model_input.multi_modal_kwargs,
- sampling_metadata=model_input.sampling_metadata,
- is_prompt=False,
- )
- # Ensure we skip CPU samples
- assert new_model_input.sampling_metadata.skip_sampler_cpu_output is True
- # We can reuse sampling tensors since every decode iteration is the same
- new_model_input.sampling_metadata.reuse_sampling_tensors = True
- if debug_advance_input:
- logger.debug("NEW INPUT: ")
- logger.debug(f" input_tokens = {new_model_input.input_tokens}")
- logger.debug(" input_positions = "
- f"{new_model_input.input_positions}")
- logger.debug(f" seq_lens = {new_model_input.seq_lens}")
- logger.debug(f" query_lens = {new_model_input.query_lens}")
- logger.debug(" attn_metadata:")
- logger.debug(" seq_lens_tensor: "
- f"{attn_metadata.seq_lens_tensor}")
- logger.debug(f" slot_mapping: {attn_metadata.slot_mapping}")
- logger.debug(f" block_tables: {attn_metadata.block_tables}")
- return new_model_input
- def supports_gpu_multi_step(self, execute_model_req: ExecuteModelRequest):
- """Determines if draft_model_runner GPU multi-step can be used.
- Currently required conditions are:
- 1. Only decodes
- 2. Only flash-attn
- 3. No LORA
- 4. No prompt_adapter_config
- """
- if not allow_gpu_advance_step:
- return False
- # We allow multi-step GPU only in decode mode
- for seq_group in execute_model_req.seq_group_metadata_list:
- if seq_group.is_prompt:
- return False
- # TODO: Add support for other attn backends
- if self.attn_backend.get_name() != "flash-attn":
- return False
- # TODO: Add support for LORA
- if self.lora_config:
- return False
- # TODO: Add soft-tuning prompt adapter support
- if self.prompt_adapter_config:
- return False
- return True
- @torch.inference_mode()
- def execute_model(
- self,
- model_input: ModelInputForGPUWithSamplingMetadata,
- kv_caches: List[torch.Tensor],
- intermediate_tensors: Optional[IntermediateTensors] = None,
- num_steps: int = 1,
- ) -> Optional[List[SamplerOutput]]:
- """Executes num_steps forward passes with advacement of input tensors
- on the GPU. Look at supports_gpu_multi_step(..) for pre-conditions.
- Optimizations used:
- 1. Input tensors are updated on the GPU directly
- 2. Skips GPU=>CPU serialization of sampler outputs (we don't need
- them since we do batch expansion later that uses GPU outputs)
- 3. Reuses sampling tensors (since we run only decodes and they have
- a repeating sampling logic)
- """
- # When num_steps == 1, we execute the fallback here for the GPU
- # advance_step, which runs prepare_inputs on CPU and for each spec
- # iteration invokes this function only once
- # (Look at multi-step-worker code)
- is_fallback = num_steps == 1
- if not is_fallback:
- # Since we do not broadcast data inside execute_model anymore,
- # we need to figure out the best way to support TP > 1 in this
- # case, because we will at least need to broadcast the sampled
- # tokens to all workers.
- if not self.is_driver_worker:
- raise ValueError("TP1DraftModelRunner only supports TP=1.")
- # Sanity
- if self.lora_config is not None:
- raise ValueError("TP1DraftModelRunner has no support for LORA")
- if self.prompt_adapter_config is not None:
- raise ValueError("TP1DraftModelRunner has no support for "
- "prompt_adapter_config")
- if model_input.multi_modal_kwargs:
- raise ValueError(
- "TP1DraftModelRunner has no support for multi_modal_kwargs"
- )
- else:
- if self.lora_config:
- assert model_input.lora_requests is not None
- assert model_input.lora_mapping is not None
- self.set_active_loras(model_input.lora_requests,
- model_input.lora_mapping)
- if self.prompt_adapter_config:
- assert model_input.prompt_adapter_requests is not None
- assert model_input.prompt_adapter_mapping is not None
- self.set_active_prompt_adapters(
- model_input.prompt_adapter_requests,
- model_input.prompt_adapter_mapping)
- if self.attn_backend.get_name() == "flashinfer":
- assert model_input.attn_metadata is not None
- assert model_input.input_tokens is not None
- if self.flashinfer_decode_workspace_buffer is None:
- self.flashinfer_decode_workspace_buffer = torch.empty(
- FLASHINFER_WORKSPACE_BUFFER_SIZE,
- dtype=torch.uint8,
- device=self.device)
- self.flashinfer_decode_wrapper = \
- BatchDecodeWithPagedKVCacheWrapper(
- self.flashinfer_decode_workspace_buffer, "NHD")
- self.flashinfer_prefill_workspace_buffer = torch.empty(
- FLASHINFER_WORKSPACE_BUFFER_SIZE,
- dtype=torch.uint8,
- device=self.device)
- self.flashinfer_prefill_wrapper = \
- BatchPrefillWithPagedKVCacheWrapper(
- self.flashinfer_prefill_workspace_buffer, "NHD")
- model_input.attn_metadata.prefill_wrapper = \
- self.flashinfer_prefill_wrapper
- if model_input.attn_metadata.use_cuda_graph:
- batch_size = model_input.input_tokens.shape[0]
- model_input.attn_metadata.decode_wrapper = \
- self.graph_runners[model_input.
- virtual_engine][batch_size].flashinfer_decode_wrapper
- else:
- model_input.attn_metadata.decode_wrapper = \
- self.flashinfer_decode_wrapper
- model_input.attn_metadata.begin_forward()
- # Detect exec mode
- assert model_input.attn_metadata is not None
- use_cuda_graph = False
- if model_input.attn_metadata.num_prefills > 0:
- # In this case, execute_model(..) was called directly
- if num_steps > 1:
- raise ValueError(
- "execute_model(..) of draft_model_runner can be called "
- "directly only with a single-step prefill")
- else:
- # We can skip CPU samples for spec token generation.
- # (We do allow CPU samples for num_steps == 1 to support the
- # fallback case, where supports_gpu_multi_step(..) does not pass)
- model_input.sampling_metadata.skip_sampler_cpu_output = (
- not is_fallback)
- # Attn attr defines if we use cuda graphs
- use_cuda_graph = model_input.attn_metadata.use_cuda_graph
- # Get model
- if use_cuda_graph:
- graph_batch_size = model_input.input_tokens.shape[0]
- model_executable = (self.graph_runners[model_input.virtual_engine]
- [graph_batch_size])
- else:
- model_executable = self.model
- outputs: List[SamplerOutput] = []
- for step in range(num_steps):
- multi_modal_kwargs = model_input.multi_modal_kwargs or {}
- # Run model
- hidden_states = model_executable(
- input_ids=model_input.input_tokens,
- positions=model_input.input_positions,
- kv_caches=kv_caches,
- attn_metadata=model_input.attn_metadata,
- intermediate_tensors=intermediate_tensors,
- **MultiModalInputs.as_kwargs(multi_modal_kwargs,
- device=self.device),
- )
- # Compute the logits.
- logits = self.model.compute_logits(hidden_states,
- model_input.sampling_metadata)
- # Sample the next token.
- outputs.append(
- self.model.sample(
- logits=logits,
- sampling_metadata=model_input.sampling_metadata,
- ))
- # Prepare inputs for the next step
- if step != num_steps - 1:
- model_input = self._gpu_advance_step(model_input, outputs[-1])
- return outputs
|