1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- /*
- * Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
- * Copyright (c) 2023, The PygmalionAI team.
- * Copyright (c) 2023, The vLLM team.
- * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #pragma once
- #include <stdint.h>
- namespace aphrodite {
- // A vector type to store Q, K, V elements.
- template<typename T, int VEC_SIZE>
- struct Vec {};
- // A vector type to store FP32 accumulators.
- template<typename T>
- struct FloatVec {};
- // Template vector operations.
- template<typename Acc, typename A, typename B>
- inline __device__ Acc mul(A a, B b);
- template<typename T>
- inline __device__ float sum(T v);
- template<typename T>
- inline __device__ float dot(T a, T b) {
- return sum(mul<T, T, T>(a, b));
- }
- template<typename A, typename T>
- inline __device__ float dot(T a, T b) {
- return sum(mul<A, T, T>(a, b));
- }
- template<typename T>
- inline __device__ void zero(T& dst) {
- constexpr int WORDS = sizeof(T) / 4;
- union {
- T raw;
- uint32_t words[WORDS];
- } tmp;
- #pragma unroll
- for (int ii = 0; ii < WORDS; ++ii) {
- tmp.words[ii] = 0u;
- }
- dst = tmp.raw;
- }
- } // namespace aphrodite
|