123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- from typing import List, Optional, Tuple, Type, overload
- import pytest
- import transformers
- from transformers import AutoConfig, AutoModelForVision2Seq, AutoTokenizer
- from aphrodite.common.sequence import SampleLogprobs
- from aphrodite.multimodal.utils import (rescale_video_size, resize_video,
- sample_frames_from_video)
- from ..conftest import VIDEO_ASSETS, AphroditeRunner, HfRunner, _VideoAssets
- from .utils import check_logprobs_close
- pytestmark = pytest.mark.vlm
- _PREFACE = (
- "A chat between a curious human and an artificial intelligence assistant. "
- "The assistant gives helpful, detailed, and polite answers to the human's "
- "questions."
- )
- HF_VIDEO_PROMPTS = VIDEO_ASSETS.prompts(
- {
- "sample_demo_1": f"{_PREFACE}USER: <video>\nWhy is this video funny? "
- "ASSISTANT:"
- }
- )
- models = ["llava-hf/LLaVA-NeXT-Video-7B-hf"]
- def aphrodite_to_hf_output(
- aphrodite_output: Tuple[List[int],
- str, Optional[SampleLogprobs]], model: str
- ):
- """Sanitize aphrodite output to be comparable with hf output."""
- output_ids, output_str, out_logprobs = aphrodite_output
- config = AutoConfig.from_pretrained(model)
- video_token_id = config.video_token_index
- tokenizer = AutoTokenizer.from_pretrained(model)
- eos_token_id = tokenizer.eos_token_id
- hf_output_ids = [
- token_id
- for idx, token_id in enumerate(output_ids)
- if token_id != video_token_id or output_ids[idx - 1] != video_token_id
- ]
- assert output_str[0] == " "
- hf_output_str = output_str[1:]
- if hf_output_ids[-1] == eos_token_id:
- hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
- return hf_output_ids, hf_output_str, out_logprobs
- @overload
- def run_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- video_assets: _VideoAssets,
- model: str,
- *,
- size_factors: List[float],
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- num_frames: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- ...
- @overload
- def run_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- video_assets: _VideoAssets,
- model: str,
- *,
- sizes: List[Tuple[int, int]],
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- num_frames: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- ...
- def run_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- video_assets: _VideoAssets,
- model: str,
- *,
- size_factors: Optional[List[float]] = None,
- sizes: Optional[List[Tuple[int, int]]] = None,
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- num_frames: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- videos = [
- sample_frames_from_video(asset.np_ndarrays, num_frames)
- for asset in video_assets
- ]
- for video in videos:
- print(video.shape)
- if size_factors is not None:
- inputs_per_video = [
- (
- [prompt for _ in size_factors],
- [rescale_video_size(video, factor) for factor in size_factors],
- )
- for video, prompt in zip(videos, HF_VIDEO_PROMPTS)
- ]
- elif sizes is not None:
- inputs_per_video = [
- (
- [prompt for _ in sizes],
- [resize_video(video, size) for size in sizes],
- )
- for video, prompt in zip(videos, HF_VIDEO_PROMPTS)
- ]
- else:
- raise ValueError("You must provide either `size_factors` or `sizes`")
- # max_model_len should be greater than image_feature_size
- with aphrodite_runner(
- model,
- dtype=dtype,
- max_model_len=4096,
- tensor_parallel_size=tensor_parallel_size,
- distributed_executor_backend=distributed_executor_backend,
- enforce_eager=True,
- ) as aphrodite_model:
- aphrodite_outputs_per_video = [
- aphrodite_model.generate_greedy_logprobs(
- prompts, max_tokens, num_logprobs=num_logprobs, videos=videos
- )
- for prompts, videos in inputs_per_video
- ]
- with hf_runner(
- model, dtype=dtype, auto_cls=AutoModelForVision2Seq
- ) as hf_model:
- hf_outputs_per_video = [
- hf_model.generate_greedy_logprobs_limit(
- prompts, max_tokens, num_logprobs=num_logprobs, videos=videos
- )
- for prompts, videos in inputs_per_video
- ]
- for hf_outputs, aphrodite_outputs in zip(
- hf_outputs_per_video, aphrodite_outputs_per_video
- ):
- # TODO: Check whether using original CLIPVisionModel can improve
- # consistency against HF
- check_logprobs_close(
- outputs_0_lst=hf_outputs,
- outputs_1_lst=[
- aphrodite_to_hf_output(aphrodite_output, model)
- for aphrodite_output in aphrodite_outputs
- ],
- name_0="hf",
- name_1="aphrodite",
- )
- @pytest.mark.skipif(
- transformers.__version__ < "4.45",
- reason="Waiting for next transformers release",
- )
- @pytest.mark.parametrize("model", models)
- @pytest.mark.parametrize(
- "size_factors",
- [
- # No video
- [],
- # Single-scale
- [1.0],
- # Single-scale, batched
- [1.0, 1.0, 1.0],
- # Multi-scale
- [0.25, 0.5, 1.0],
- ],
- )
- @pytest.mark.parametrize("dtype", ["half"])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- @pytest.mark.parametrize("num_frames", [16])
- def test_models(
- hf_runner,
- aphrodite_runner,
- video_assets,
- model,
- size_factors,
- dtype,
- max_tokens,
- num_logprobs,
- num_frames,
- ) -> None:
- """Inference result should be the same between hf and aphrodite.
- All the image fixtures for the test is under tests/videos.
- For huggingface runner, we provide the np.ndarray as input.
- For aphrodite runner, we provide MultiModalDataDict objects
- and corresponding MultiModalConfig as input.
- Note, the text input is also adjusted to abide by aphrodite contract.
- The text output is sanitized to be able to compare with hf.
- """
- run_test(
- hf_runner,
- aphrodite_runner,
- video_assets,
- model,
- size_factors=size_factors,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- num_frames=num_frames,
- tensor_parallel_size=1,
- )
- @pytest.mark.skipif(
- transformers.__version__ < "4.45",
- reason="Waiting for next transformers release",
- )
- @pytest.mark.parametrize("model", models)
- @pytest.mark.parametrize(
- "sizes",
- [[(1669, 2560), (2560, 1669), (183, 488), (488, 183)]],
- )
- @pytest.mark.parametrize("dtype", ["half"])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- @pytest.mark.parametrize("num_frames", [16])
- def test_models_fixed_sizes(
- hf_runner,
- aphrodite_runner,
- video_assets,
- model,
- sizes,
- dtype,
- max_tokens,
- num_logprobs,
- num_frames,
- ) -> None:
- run_test(
- hf_runner,
- aphrodite_runner,
- video_assets,
- model,
- sizes=sizes,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- num_frames=num_frames,
- tensor_parallel_size=1,
- )
|