1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- """Compare the outputs of HF and Aphrodite when using greedy sampling.
- This tests bigger models and use half precision.
- Run `pytest tests/models/test_big_models.py`.
- """
- import pytest
- import torch
- from .utils import check_outputs_equal
- MODELS = [
- "meta-llama/Llama-2-7b-hf",
- # "mistralai/Mistral-7B-v0.1", # Tested by test_mistral.py
- # "Deci/DeciLM-7b", # Broken
- # "tiiuae/falcon-7b", # Broken
- "EleutherAI/gpt-j-6b",
- # "mosaicml/mpt-7b", # Broken
- # "Qwen/Qwen1.5-0.5B" # Broken,
- ]
- #TODO: remove this after CPU float16 support ready
- target_dtype = "float"
- if torch.cuda.is_available():
- target_dtype = "half"
- @pytest.mark.parametrize("model", MODELS)
- @pytest.mark.parametrize("dtype", [target_dtype])
- @pytest.mark.parametrize("max_tokens", [32])
- def test_models(
- hf_runner,
- aphrodite_runner,
- example_prompts,
- model: str,
- dtype: str,
- max_tokens: int,
- ) -> None:
- with hf_runner(model, dtype=dtype) as hf_model:
- hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
- with aphrodite_runner(model, dtype=dtype) as aphrodite_model:
- aphrodite_outputs = aphrodite_model.generate_greedy(
- example_prompts, max_tokens)
- check_outputs_equal(
- outputs_0_lst=hf_outputs,
- outputs_1_lst=aphrodite_outputs,
- name_0="hf",
- name_1="aphrodite",
- )
- @pytest.mark.parametrize("model", MODELS)
- @pytest.mark.parametrize("dtype", [target_dtype])
- def test_model_print(
- aphrodite_runner,
- model: str,
- dtype: str,
- ) -> None:
- with aphrodite_runner(model, dtype=dtype) as aphrodite_model:
- # This test is for verifying whether the model's extra_repr
- # can be printed correctly.
- print(aphrodite_model.model.llm_engine.model_executor.driver_worker.
- model_runner.model)
|