1
0

aphrodite_engine.py 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. import time
  2. from typing import Iterable, List, Optional, Type, Union
  3. from loguru import logger
  4. from transformers import GenerationConfig, PreTrainedTokenizer
  5. import aphrodite
  6. from aphrodite.common.config import (CacheConfig, DecodingConfig, DeviceConfig,
  7. LoadConfig, LoRAConfig, ModelConfig,
  8. ParallelConfig, SchedulerConfig,
  9. SpeculativeConfig, VisionLanguageConfig)
  10. from aphrodite.common.logger import setup_logger
  11. from aphrodite.common.outputs import (EmbeddingRequestOutput, RequestOutput,
  12. RequestOutputFactory)
  13. from aphrodite.common.pooling_params import PoolingParams
  14. from aphrodite.common.sampling_params import SamplingParams
  15. from aphrodite.common.sequence import (EmbeddingSequenceGroupOutput,
  16. ExecuteModelRequest, MultiModalData,
  17. PoolerOutput, SamplerOutput, Sequence,
  18. SequenceGroup, SequenceGroupMetadata,
  19. SequenceStatus)
  20. from aphrodite.common.utils import Counter
  21. from aphrodite.engine.args_tools import EngineArgs
  22. from aphrodite.engine.metrics import StatLogger, Stats
  23. from aphrodite.engine.output_processor.interfaces import \
  24. SequenceGroupOutputProcessor
  25. from aphrodite.engine.output_processor.stop_checker import StopChecker
  26. from aphrodite.engine.output_processor.util import \
  27. create_output_by_sequence_group
  28. from aphrodite.executor.executor_base import ExecutorBase
  29. from aphrodite.executor.ray_utils import initialize_ray_cluster
  30. from aphrodite.lora.request import LoRARequest
  31. from aphrodite.processing.scheduler import (ScheduledSequenceGroup, Scheduler,
  32. SchedulerOutputs)
  33. from aphrodite.transformers_utils.detokenizer import Detokenizer
  34. from aphrodite.transformers_utils.tokenizer_group import (BaseTokenizerGroup,
  35. get_tokenizer_group)
  36. _LOCAL_LOGGING_INTERVAL_SEC = 5
  37. def _load_generation_config_dict(model_config: ModelConfig):
  38. try:
  39. return GenerationConfig.from_pretrained(
  40. model_config.model,
  41. revision=model_config.revision,
  42. ).to_diff_dict()
  43. except OSError:
  44. # Not found.
  45. return {}
  46. class AphroditeEngine:
  47. """An LLM engine that receives requests and generates texts.
  48. This is the main class for the Aphrodite engine. It receives requests
  49. from clients and generates texts from the LLM. It includes a tokenizer, a
  50. language model (possibly distributed across multiple GPUs), and GPU memory
  51. space allocated for intermediate states (aka KV cache). This class utilizes
  52. iteration-level scheduling and efficient memory management to maximize the
  53. serving throughput.
  54. The `LLM` class wraps this class for offline batched inference and the
  55. `AsyncAphrodite` class wraps this class for online serving.
  56. NOTE: The config arguments are derived from the `EngineArgs` class. For the
  57. comprehensive list of arguments, see `EngineArgs`.
  58. Args:
  59. model_config: The configuration related to the LLM model.
  60. cache_config: The configuration related to the KV cache memory
  61. management.
  62. parallel_config: The configuration related to distributed execution.
  63. scheduler_config: The configuration related to the request scheduler.
  64. device_config: The configuration related to the device.
  65. lora_config (Optional): The configuration related to serving multi-LoRA.
  66. vision_language_config (Optional): The configuration related to vision
  67. language models.
  68. speculative_config (Optional): The configuration related to speculative
  69. decoding.
  70. executor_class: The model executor class for managing distributed
  71. execution.
  72. log_stats: Whether to log statistics.
  73. """
  74. def __init__(
  75. self,
  76. model_config: ModelConfig,
  77. cache_config: CacheConfig,
  78. parallel_config: ParallelConfig,
  79. scheduler_config: SchedulerConfig,
  80. device_config: DeviceConfig,
  81. load_config: LoadConfig,
  82. lora_config: Optional[LoRAConfig],
  83. vision_language_config: Optional[VisionLanguageConfig],
  84. speculative_config: Optional[SpeculativeConfig],
  85. decoding_config: Optional[DecodingConfig],
  86. executor_class: Type[ExecutorBase],
  87. log_stats: bool,
  88. ) -> None:
  89. logger.info(
  90. "-" * 76 + "\n"
  91. f"Initializing the Aphrodite Engine (v{aphrodite.__version__}) "
  92. "with the following config:\n"
  93. f"Model = {model_config.model!r}\n"
  94. f"Speculative Config = {speculative_config!r}\n"
  95. f"DataType = {model_config.dtype}\n"
  96. f"Model Load Format = {load_config.load_format}\n"
  97. f"Number of GPUs = {parallel_config.tensor_parallel_size}\n"
  98. f"Disable Custom All-Reduce = "
  99. f"{parallel_config.disable_custom_all_reduce}\n"
  100. f"Quantization Format = {model_config.quantization}\n"
  101. f"Context Length = {model_config.max_model_len}\n"
  102. f"Enforce Eager Mode = {model_config.enforce_eager}\n"
  103. f"Prefix Caching = {cache_config.enable_prefix_caching}\n"
  104. f"KV Cache DataType = {cache_config.cache_dtype}\n"
  105. f"Device = {device_config.device}\n"
  106. f"Rope Scaling = {model_config.rope_scaling}\n"
  107. f"Guided Decoding Backend = {decoding_config!r}\n")
  108. logger.info("-" * 76)
  109. # TODO: Print more configs in debug mode.
  110. self.model_config = model_config
  111. self.cache_config = cache_config
  112. self.lora_config = lora_config
  113. self.vision_language_config = vision_language_config
  114. self.parallel_config = parallel_config
  115. self.scheduler_config = scheduler_config
  116. self.device_config = device_config
  117. self.speculative_config = speculative_config
  118. self.load_config = load_config
  119. self.decoding_config = decoding_config or DecodingConfig()
  120. self.log_stats = log_stats
  121. if not self.model_config.skip_tokenizer_init:
  122. self.tokenizer: BaseTokenizerGroup
  123. self._init_tokenizer()
  124. self.detokenizer = Detokenizer(self.tokenizer)
  125. else:
  126. self.detokenizer = None
  127. self.tokenizer = None
  128. self.seq_counter = Counter()
  129. self.generation_config_fields = _load_generation_config_dict(
  130. model_config)
  131. self.model_executor = executor_class(
  132. model_config=model_config,
  133. cache_config=cache_config,
  134. parallel_config=parallel_config,
  135. scheduler_config=scheduler_config,
  136. device_config=device_config,
  137. lora_config=lora_config,
  138. vision_language_config=vision_language_config,
  139. speculative_config=speculative_config,
  140. load_config=load_config,
  141. )
  142. if not self.model_config.embedding_mode:
  143. self._initialize_kv_caches()
  144. if self.tokenizer:
  145. # Ping the tokenizer to ensure liveness if it runs in a
  146. # different process.
  147. self.tokenizer.ping()
  148. # Create the scheduler.
  149. # NOTE: the cache_config here have been updated with the numbers of
  150. # GPU and CPU blocks, which are profiled in the distributed executor.
  151. self.scheduler = Scheduler(scheduler_config, cache_config, lora_config)
  152. # Metric Logging.
  153. if self.log_stats:
  154. self.stat_logger = StatLogger(
  155. local_interval=_LOCAL_LOGGING_INTERVAL_SEC,
  156. labels=dict(model_name=model_config.model),
  157. max_model_len=self.model_config.max_model_len)
  158. self.stat_logger.info("cache_config", self.cache_config)
  159. # Create sequence output processor, e.g. for beam search or
  160. # speculative decoding.
  161. self.output_processor = (
  162. SequenceGroupOutputProcessor.create_output_processor(
  163. self.scheduler_config,
  164. self.detokenizer,
  165. self.scheduler,
  166. self.seq_counter,
  167. self.get_tokenizer_for_seq,
  168. stop_checker=StopChecker(
  169. self.scheduler_config.max_model_len,
  170. self.get_tokenizer_for_seq,
  171. ),
  172. ))
  173. def _initialize_kv_caches(self) -> None:
  174. """Initialize the KV cache in the worker(s).
  175. The workers will determine the number of blocks in both the GPU cache
  176. and the swap CPU cache.
  177. """
  178. num_gpu_blocks, num_cpu_blocks = (
  179. self.model_executor.determine_num_available_blocks())
  180. if self.cache_config.num_gpu_blocks_override is not None:
  181. num_gpu_blocks_override = self.cache_config.num_gpu_blocks_override
  182. logger.info(f"Overriding {num_gpu_blocks=} with "
  183. f"{num_gpu_blocks_override=}")
  184. num_gpu_blocks = num_gpu_blocks_override
  185. self.cache_config.num_gpu_blocks = num_gpu_blocks
  186. self.cache_config.num_cpu_blocks = num_cpu_blocks
  187. self.model_executor.initialize_cache(num_gpu_blocks, num_cpu_blocks)
  188. @classmethod
  189. def from_engine_args(
  190. cls,
  191. engine_args: EngineArgs,
  192. ) -> "AphroditeEngine":
  193. """Creates an LLM engine from the engine arguments."""
  194. # Create the engine configs.
  195. engine_config = engine_args.create_engine_config()
  196. distributed_executor_backend = (
  197. engine_config.parallel_config.distributed_executor_backend)
  198. # Initialize the cluster and specify the executor class.
  199. if engine_config.device_config.device_type == "neuron":
  200. from aphrodite.executor.neuron_executor import NeuronExecutor
  201. executor_class = NeuronExecutor
  202. elif engine_config.device_config.device_type == "cpu":
  203. from aphrodite.executor.cpu_executor import CPUExecutor
  204. executor_class = CPUExecutor
  205. elif distributed_executor_backend == "ray":
  206. initialize_ray_cluster(engine_config.parallel_config)
  207. from aphrodite.executor.ray_gpu_executor import RayGPUExecutor
  208. executor_class = RayGPUExecutor
  209. elif distributed_executor_backend == "mp":
  210. from aphrodite.executor.multiproc_gpu_executor import (
  211. MultiprocessingGPUExecutor)
  212. executor_class = MultiprocessingGPUExecutor
  213. else:
  214. from aphrodite.executor.gpu_executor import GPUExecutor
  215. executor_class = GPUExecutor
  216. # Create the LLM engine.
  217. engine = cls(
  218. **engine_config.to_dict(),
  219. executor_class=executor_class,
  220. log_stats=not engine_args.disable_log_stats,
  221. )
  222. return engine
  223. def __reduce__(self):
  224. # This is to ensure that the AphroditeEngine is not referenced in
  225. # the closure used to initialize Ray worker actors
  226. raise RuntimeError("AphroditeEngine should not be pickled!")
  227. def __del__(self):
  228. # Shutdown the model executor when engine is garbage collected.
  229. # Use getattr since __init__ can fail before the field is set
  230. if model_executor := getattr(self, "model_executor", None):
  231. model_executor.shutdown()
  232. def get_tokenizer(self) -> "PreTrainedTokenizer":
  233. return self.tokenizer.get_lora_tokenizer(None)
  234. def get_tokenizer_for_seq(self,
  235. sequence: Sequence) -> "PreTrainedTokenizer":
  236. return self.tokenizer.get_lora_tokenizer(sequence.lora_request)
  237. def _init_tokenizer(self, **tokenizer_init_kwargs):
  238. init_kwargs = dict(
  239. tokenizer_id=self.model_config.tokenizer,
  240. enable_lora=bool(self.lora_config),
  241. max_num_seqs=self.scheduler_config.max_num_seqs,
  242. max_input_length=None,
  243. tokenizer_mode=self.model_config.tokenizer_mode,
  244. trust_remote_code=self.model_config.trust_remote_code,
  245. revision=self.model_config.tokenizer_revision)
  246. init_kwargs.update(tokenizer_init_kwargs)
  247. self.tokenizer = get_tokenizer_group(
  248. self.parallel_config.tokenizer_pool_config, **init_kwargs)
  249. def _verify_args(self) -> None:
  250. self.model_config.verify_with_parallel_config(self.parallel_config)
  251. self.cache_config.verify_with_parallel_config(self.parallel_config)
  252. if self.lora_config:
  253. self.lora_config.verify_with_model_config(self.model_config)
  254. self.lora_config.verify_with_scheduler_config(
  255. self.scheduler_config)
  256. def encode_request(
  257. self,
  258. request_id: str, # pylint: disable=unused-argument
  259. prompt: Optional[str],
  260. prompt_token_ids: Optional[List[int]] = None,
  261. lora_request: Optional[LoRARequest] = None,
  262. ):
  263. if prompt_token_ids is None:
  264. assert prompt is not None
  265. prompt_token_ids = self.tokenizer.encode(request_id=request_id,
  266. prompt=prompt,
  267. lora_request=lora_request)
  268. return prompt_token_ids
  269. def add_request(
  270. self,
  271. request_id: str,
  272. prompt: Optional[str],
  273. params: Union[SamplingParams, PoolingParams],
  274. prompt_token_ids: Optional[List[int]] = None,
  275. arrival_time: Optional[float] = None,
  276. lora_request: Optional[LoRARequest] = None,
  277. multi_modal_data: Optional[MultiModalData] = None,
  278. ) -> None:
  279. """Add a request to the engine's request pool.
  280. The request is added to the request pool and will be processed by the
  281. scheduler as `engine.step()` is called. The exact scheduling policy is
  282. determined by the scheduler.
  283. Args:
  284. request_id: The unique ID of the request.
  285. prompt: The prompt string. Can be None if prompt_token_ids is
  286. provided.
  287. params: Parameters for sampling or pooling. SamplingParams
  288. for text generation. PoolingParams for pooling.
  289. prompt_token_ids: The token IDs of the prompt. If None, we
  290. use the tokenizer to convert the prompts to token IDs.
  291. arrival_time: The arrival time of the request. If None, we use
  292. the current monotonic time.
  293. multi_modal_data: Multi modal data per request.
  294. Details:
  295. - Set arrival_time to the current time if it is None.
  296. - Set prompt_token_ids to the encoded prompt if it is None.
  297. - Create `best_of` number of :class:`~aphrodite.common.sequence`
  298. objects.
  299. - Create a :class:`~aphrodite.common.sequenceGroup` object
  300. from the list of :class:`~aphrodite.common.sequence`.
  301. - Add the :class:`~aphrodite.common.sequenceGroup` object to the
  302. scheduler.
  303. Example:
  304. >>> # initialize engine
  305. >>> engine = AphroditeEngine.from_engine_args(engine_args)
  306. >>> # set request arguments
  307. >>> example_prompt = "Who is the president of the United States?"
  308. >>> sampling_params = SamplingParams(temperature=0.0)
  309. >>> request_id = 0
  310. >>>
  311. >>> # add the request to the engine
  312. >>> engine.add_request(
  313. >>> str(request_id),
  314. >>> example_prompt,
  315. >>> SamplingParams(temperature=0.0))
  316. >>> # continue the request processing
  317. >>> ...
  318. """
  319. if lora_request is not None and not self.lora_config:
  320. raise ValueError(f"Got lora_request {lora_request} but LoRA is "
  321. "not enabled!")
  322. if arrival_time is None:
  323. arrival_time = time.time()
  324. prompt_token_ids = self.encode_request(
  325. request_id=request_id,
  326. prompt=prompt,
  327. prompt_token_ids=prompt_token_ids,
  328. lora_request=lora_request)
  329. # Create the sequences.
  330. block_size = self.cache_config.block_size
  331. seq_id = next(self.seq_counter)
  332. eos_token_id = None
  333. if self.tokenizer:
  334. eos_token_id = self.tokenizer.get_lora_tokenizer(
  335. lora_request).eos_token_id
  336. else:
  337. logger.warning("Use None for EOS token id because tokenizer is "
  338. "not initialized")
  339. seq = Sequence(seq_id, prompt, prompt_token_ids, block_size,
  340. eos_token_id, lora_request)
  341. # Create a SequenceGroup based on SamplingParams or PoolingParams
  342. if isinstance(params, SamplingParams):
  343. seq_group = self._create_sequence_group_with_sampling(
  344. request_id,
  345. seq,
  346. params,
  347. arrival_time,
  348. lora_request,
  349. multi_modal_data,
  350. )
  351. elif isinstance(params, PoolingParams):
  352. seq_group = self._create_sequence_group_with_pooling(
  353. request_id,
  354. seq,
  355. params,
  356. arrival_time,
  357. lora_request,
  358. multi_modal_data,
  359. )
  360. else:
  361. raise ValueError(
  362. "Either SamplingParams or PoolingParams must be provided.")
  363. # Add the sequence group to the scheduler.
  364. self.scheduler.add_seq_group(seq_group)
  365. def _create_sequence_group_with_sampling(
  366. self,
  367. request_id: str,
  368. seq: Sequence,
  369. sampling_params: SamplingParams,
  370. arrival_time: Optional[float] = None,
  371. lora_request: Optional[LoRARequest] = None,
  372. multi_modal_data: Optional[MultiModalData] = None,
  373. ) -> SequenceGroup:
  374. """Creates a SequenceGroup with SamplingParams."""
  375. max_logprobs = self.get_model_config().max_logprobs
  376. if (sampling_params.logprobs
  377. and sampling_params.logprobs > max_logprobs) or (
  378. sampling_params.prompt_logprobs
  379. and sampling_params.prompt_logprobs > max_logprobs):
  380. raise ValueError(f"Cannot request more than "
  381. f"{max_logprobs} logprobs.")
  382. # Defensive copy of SamplingParams, which are used by the sampler,
  383. # this doesn't deep-copy LogitsProcessor objects
  384. sampling_params = sampling_params.clone()
  385. # Add the eos token id into the sampling_params to support min_tokens
  386. # processing
  387. if seq.eos_token_id is not None:
  388. sampling_params.all_stop_token_ids.add(seq.eos_token_id)
  389. sampling_params.update_from_generation_config(
  390. self.generation_config_fields)
  391. # Create the sequence group.
  392. seq_group = SequenceGroup(request_id=request_id,
  393. seqs=[seq],
  394. arrival_time=arrival_time,
  395. sampling_params=sampling_params,
  396. lora_request=lora_request,
  397. multi_modal_data=multi_modal_data)
  398. return seq_group
  399. def _create_sequence_group_with_pooling(
  400. self,
  401. request_id: str,
  402. seq: Sequence,
  403. pooling_params: PoolingParams,
  404. arrival_time: Optional[float] = None,
  405. lora_request: Optional[LoRARequest] = None,
  406. multi_modal_data: Optional[MultiModalData] = None,
  407. ) -> SequenceGroup:
  408. """Creates a SequenceGroup with PoolingParams."""
  409. # Defensive copy of PoolingParams, which are used by the pooler
  410. pooling_params = pooling_params.clone()
  411. # Create the sequence group.
  412. seq_group = SequenceGroup(request_id=request_id,
  413. seqs=[seq],
  414. arrival_time=arrival_time,
  415. lora_request=lora_request,
  416. multi_modal_data=multi_modal_data,
  417. pooling_params=pooling_params)
  418. return seq_group
  419. def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
  420. """Aborts a request(s) with the given ID.
  421. Args:
  422. request_id: The ID(s) of the request to abort.
  423. Details:
  424. - Refer to the
  425. :meth:`~aphrodite.processing.scheduler.Scheduler.abort_seq_group`
  426. from class :class:`~aphrodite.processing.scheduler.Scheduler`.
  427. Example:
  428. >>> # initialize engine and add a request with request_id
  429. >>> request_id = str(0)
  430. >>> # abort the request
  431. >>> engine.abort_request(request_id)
  432. """
  433. self.scheduler.abort_seq_group(request_id)
  434. def get_model_config(self) -> ModelConfig:
  435. """Gets the model configuration."""
  436. return self.model_config
  437. def get_decoding_config(self) -> DecodingConfig:
  438. """Gets the decoding configuration."""
  439. return self.decoding_config
  440. def get_num_unfinished_requests(self) -> int:
  441. """Gets the number of unfinished requests."""
  442. return self.scheduler.get_num_unfinished_seq_groups()
  443. def has_unfinished_requests(self) -> bool:
  444. """Returns True if there are unfinished requests."""
  445. return self.scheduler.has_unfinished_seqs()
  446. def _process_sequence_group_outputs(
  447. self,
  448. seq_group: SequenceGroup,
  449. outputs: List[EmbeddingSequenceGroupOutput],
  450. ) -> None:
  451. seq_group.embeddings = outputs[0].embeddings
  452. for seq in seq_group.get_seqs():
  453. seq.status = SequenceStatus.FINISHED_STOPPED
  454. return
  455. def _process_model_outputs(
  456. self,
  457. output: List[Union[SamplerOutput, PoolerOutput]],
  458. scheduled_seq_groups: List[ScheduledSequenceGroup],
  459. ignored_seq_groups: List[SequenceGroup],
  460. seq_group_metadata_list: List[SequenceGroupMetadata],
  461. ) -> List[Union[RequestOutput, EmbeddingRequestOutput]]:
  462. """Apply the model output to the sequences in the scheduled seq groups.
  463. Returns RequestOutputs that can be returned to the client.
  464. """
  465. now = time.time()
  466. # Organize outputs by [sequence group][step] instead of
  467. # [step][sequence group].
  468. output_by_sequence_group = create_output_by_sequence_group(
  469. sampler_outputs=output, num_seq_groups=len(scheduled_seq_groups))
  470. # Update the scheduled sequence groups with the model outputs.
  471. for scheduled_seq_group, outputs, seq_group_meta in zip(
  472. scheduled_seq_groups, output_by_sequence_group,
  473. seq_group_metadata_list):
  474. seq_group = scheduled_seq_group.seq_group
  475. seq_group.update_num_computed_tokens(
  476. scheduled_seq_group.token_chunk_size)
  477. if self.model_config.embedding_mode:
  478. self._process_sequence_group_outputs(seq_group, outputs)
  479. continue
  480. self.output_processor.process_prompt_logprob(seq_group, outputs)
  481. if seq_group_meta.do_sample:
  482. self.output_processor.process_outputs(seq_group, outputs)
  483. # Free the finished sequence groups.
  484. self.scheduler.free_finished_seq_groups()
  485. # Create the outputs.
  486. request_outputs: List[Union[RequestOutput,
  487. EmbeddingRequestOutput]] = []
  488. for scheduled_seq_group in scheduled_seq_groups:
  489. seq_group = scheduled_seq_group.seq_group
  490. seq_group.maybe_set_first_token_time(now)
  491. request_output = RequestOutputFactory.create(seq_group)
  492. request_outputs.append(request_output)
  493. for seq_group in ignored_seq_groups:
  494. request_output = RequestOutputFactory.create(seq_group)
  495. request_outputs.append(request_output)
  496. return request_outputs
  497. def step(self) -> List[Union[RequestOutput, EmbeddingRequestOutput]]:
  498. """Performs one decoding iteration and returns newly generated results.
  499. .. figure:: https://i.imgur.com/sv2HssD.png
  500. :alt: Overview of the step function
  501. :align: center
  502. Overview of the step function.
  503. Details:
  504. - Step 1: Schedules the sequences to be executed in the next
  505. iteration and the token blocks to be swapped in/out/copy.
  506. - Depending on the scheduling policy,
  507. sequences may be `preempted/reordered`.
  508. - A Sequence Group (SG) refer to a group of sequences
  509. that are generated from the same prompt.
  510. - Step 2: Calls the distributed executor to execute the model.
  511. - Step 3: Processes the model output. This mainly includes:
  512. - Decodes the relevant outputs.
  513. - Updates the scheduled sequence groups with model outputs
  514. based on its `sampling parameters` (`use_beam_search` or not).
  515. - Frees the finished sequence groups.
  516. - Finally, it creates and returns the newly generated results.
  517. Example:
  518. >>> # Please see the example/ folder for more detailed examples.
  519. >>>
  520. >>> # initialize engine and request arguments
  521. >>> engine = AphroditeEngine.from_engine_args(engine_args)
  522. >>> example_inputs = [(0, "What is LLM?",
  523. >>> SamplingParams(temperature=0.0))]
  524. >>>
  525. >>> # Start the engine with an event loop
  526. >>> while True:
  527. >>> if example_inputs:
  528. >>> req_id, prompt, sampling_params = example_inputs.pop(0)
  529. >>> engine.add_request(str(req_id), prompt, sampling_params)
  530. >>>
  531. >>> # continue the request processing
  532. >>> request_outputs = engine.step()
  533. >>> for request_output in request_outputs:
  534. >>> if request_output.finished:
  535. >>> # return or show the request output
  536. >>>
  537. >>> if not (engine.has_unfinished_requests() or example_inputs):
  538. >>> break
  539. """
  540. seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
  541. if not scheduler_outputs.is_empty():
  542. execute_model_req = ExecuteModelRequest(
  543. seq_group_metadata_list=seq_group_metadata_list,
  544. blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
  545. blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
  546. blocks_to_copy=scheduler_outputs.blocks_to_copy,
  547. num_lookahead_slots=scheduler_outputs.num_lookahead_slots,
  548. running_queue_size=scheduler_outputs.running_queue_size,
  549. )
  550. output = self.model_executor.execute_model(
  551. execute_model_req=execute_model_req)
  552. else:
  553. output = []
  554. request_outputs = self._process_model_outputs(
  555. output, scheduler_outputs.scheduled_seq_groups,
  556. scheduler_outputs.ignored_seq_groups, seq_group_metadata_list)
  557. # Log stats.
  558. self.do_log_stats(scheduler_outputs, output)
  559. if not request_outputs:
  560. # Stop the execute model loop in parallel workers until there are
  561. # more requests to process. This avoids waiting indefinitely in
  562. # torch.distributed ops which may otherwise timeout, and unblocks
  563. # the RPC thread in the workers so that they can process any other
  564. # queued control plane messages, such as add/remove lora adapters.
  565. self.model_executor.stop_remote_worker_execution_loop()
  566. return request_outputs
  567. def do_log_stats(
  568. self,
  569. scheduler_outputs: Optional[SchedulerOutputs] = None,
  570. model_output: Optional[List[SamplerOutput]] = None) -> None:
  571. """Forced log when no requests active."""
  572. if self.log_stats:
  573. self.stat_logger.log(
  574. self._get_stats(scheduler_outputs, model_output))
  575. def _get_stats(
  576. self,
  577. scheduler_outputs: Optional[SchedulerOutputs],
  578. model_output: Optional[List[SamplerOutput]] = None) -> Stats:
  579. """Get Stats to be Logged to Prometheus.
  580. Args:
  581. scheduler_outputs: Optional, used to populate metrics related to
  582. the scheduled batch,
  583. model_output: Optional, used to emit speculative decoding metrics
  584. which are created by the workers.
  585. """
  586. now = time.time()
  587. # System State
  588. # Scheduler State
  589. num_running_sys = len(self.scheduler.running)
  590. num_swapped_sys = len(self.scheduler.swapped)
  591. num_waiting_sys = len(self.scheduler.waiting)
  592. # KV Cache Usage in %
  593. num_total_gpu = self.cache_config.num_gpu_blocks
  594. gpu_cache_usage_sys = 0.
  595. if num_total_gpu is not None:
  596. num_free_gpu = self.scheduler.block_manager.get_num_free_gpu_blocks(
  597. )
  598. gpu_cache_usage_sys = 1.0 - (num_free_gpu / num_total_gpu)
  599. num_total_cpu = self.cache_config.num_cpu_blocks
  600. cpu_cache_usage_sys = 0.
  601. if num_total_cpu is not None and num_total_cpu > 0:
  602. num_free_cpu = self.scheduler.block_manager.get_num_free_cpu_blocks(
  603. )
  604. cpu_cache_usage_sys = 1.0 - (num_free_cpu / num_total_cpu)
  605. # Iteration stats
  606. num_prompt_tokens_iter = 0
  607. num_generation_tokens_iter = 0
  608. time_to_first_tokens_iter: List[float] = []
  609. time_per_output_tokens_iter: List[float] = []
  610. num_preemption_iter = (0 if scheduler_outputs is None else
  611. scheduler_outputs.preempted)
  612. # Request stats
  613. # Latency
  614. time_e2e_requests: List[float] = []
  615. # Metadata
  616. num_prompt_tokens_requests: List[int] = []
  617. num_generation_tokens_requests: List[int] = []
  618. best_of_requests: List[int] = []
  619. n_requests: List[int] = []
  620. finished_reason_requests: List[str] = []
  621. # NOTE: This loop assumes prefill seq_groups are before
  622. # decode seq_groups in scheduled_seq_groups.
  623. if scheduler_outputs is not None:
  624. num_generation_tokens_from_prefill_groups = 0.
  625. # NOTE: if scheduler_outputs.num_prefill_groups > 0 and
  626. # the len of scheduler_outputs.scheduled_seq_groups is !=
  627. # scheduler_outputs.num_prefill_groups, this means that
  628. # chunked prefills have been detected.
  629. for idx, scheduled_seq_group in enumerate(
  630. scheduler_outputs.scheduled_seq_groups):
  631. group_was_prefill = idx < scheduler_outputs.num_prefill_groups
  632. seq_group = scheduled_seq_group.seq_group
  633. # NOTE: a seq_group that completed all of its prefill tokens
  634. # in the last iteration will have seq_group.is_prefill() = False
  635. # with group_was_prefill = True
  636. if group_was_prefill:
  637. # Number of prompt tokens.
  638. num_prompt_tokens_iter += (
  639. scheduled_seq_group.token_chunk_size)
  640. # If the seq_group just finished the prefill state
  641. # get TTFT.
  642. if not seq_group.is_prefill():
  643. latency = seq_group.get_last_latency(now)
  644. time_to_first_tokens_iter.append(latency)
  645. # One generation token per finished prefill.
  646. num_generation_tokens_from_prefill_groups += (
  647. seq_group.num_seqs())
  648. else:
  649. # TPOTs.
  650. latency = seq_group.get_last_latency(now)
  651. time_per_output_tokens_iter.append(latency)
  652. # Because of chunked prefill, we can have a single sequence
  653. # group that does multiple prompt_runs. To prevent logging
  654. # the same metadata more than once per request, we standardize
  655. # on logging request level information for finished requests,
  656. # which can only happen once.
  657. if seq_group.is_finished():
  658. # Latency timings
  659. time_e2e_requests.append(now -
  660. seq_group.metrics.arrival_time)
  661. # Metadata
  662. num_prompt_tokens_requests.append(
  663. len(seq_group.prompt_token_ids))
  664. num_generation_tokens_requests.extend([
  665. seq.get_output_len()
  666. for seq in seq_group.get_finished_seqs()
  667. ])
  668. if seq_group.sampling_params is not None:
  669. best_of_requests.append(
  670. seq_group.sampling_params.best_of)
  671. n_requests.append(seq_group.sampling_params.n)
  672. finished_reason_requests.extend([
  673. SequenceStatus.get_finished_reason(seq.status)
  674. for seq in seq_group.get_finished_seqs()
  675. ])
  676. # Number of generation tokens.
  677. # num_batched_tokens equals the number of prompt_tokens plus the
  678. # number of decode_tokens in a single iteration. So,
  679. # num_generation_tokens = num_batched_tokens - num_prompt_tokens
  680. # + num_generation_tokens_from_prefill_groups (since we generate
  681. # one token on prefills on iters where the prefill finishes).
  682. num_generation_tokens_iter = (
  683. scheduler_outputs.num_batched_tokens - num_prompt_tokens_iter +
  684. num_generation_tokens_from_prefill_groups)
  685. # Spec decode, if enabled, emits specialized metrics from the worker in
  686. # sampler output.
  687. if model_output and (model_output[0].spec_decode_worker_metrics
  688. is not None):
  689. spec_decode_metrics = model_output[0].spec_decode_worker_metrics
  690. else:
  691. spec_decode_metrics = None
  692. return Stats(
  693. now=now,
  694. # System stats
  695. # Scheduler State
  696. num_running_sys=num_running_sys,
  697. num_swapped_sys=num_swapped_sys,
  698. num_waiting_sys=num_waiting_sys,
  699. # KV Cache Usage in %
  700. gpu_cache_usage_sys=gpu_cache_usage_sys,
  701. cpu_cache_usage_sys=cpu_cache_usage_sys,
  702. # Iteration stats
  703. num_prompt_tokens_iter=num_prompt_tokens_iter,
  704. num_generation_tokens_iter=num_generation_tokens_iter,
  705. time_to_first_tokens_iter=time_to_first_tokens_iter,
  706. time_per_output_tokens_iter=time_per_output_tokens_iter,
  707. spec_decode_metrics=spec_decode_metrics,
  708. num_preemption_iter=num_preemption_iter,
  709. # Request stats
  710. # Latency
  711. time_e2e_requests=time_e2e_requests,
  712. # Metadata
  713. num_prompt_tokens_requests=num_prompt_tokens_requests,
  714. num_generation_tokens_requests=num_generation_tokens_requests,
  715. best_of_requests=best_of_requests,
  716. n_requests=n_requests,
  717. finished_reason_requests=finished_reason_requests,
  718. )
  719. def add_lora(self, lora_request: LoRARequest) -> bool:
  720. return self.model_executor.add_lora(lora_request)
  721. def remove_lora(self, lora_id: int) -> bool:
  722. return self.model_executor.remove_lora(lora_id)
  723. def list_loras(self) -> List[int]:
  724. return self.model_executor.list_loras()
  725. def check_health(self) -> None:
  726. self.model_executor.check_health()
  727. setup_logger()