123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- from typing import List, Set, Tuple
- import torch
- from loguru import logger
- from aphrodite.common.sequence import ExecuteModelRequest, SamplerOutput
- from aphrodite.common.utils import (get_distributed_init_method, get_ip,
- get_open_port, make_async)
- from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase
- from aphrodite.lora.request import LoRARequest
- class TPUExecutor(ExecutorBase):
- def _init_executor(self) -> None:
- assert not self.scheduler_config.chunked_prefill_enabled, (
- "Chunked prefill is not yet supported for TPU backend")
- assert not self.speculative_config, (
- "Speculative decoding is not yet supported for TPU backend")
- if self.model_config.dtype in (torch.float16, torch.float32):
- logger.warning(
- "The TPU backend currently does not support %s. "
- "Using bfloat16 instead.", self.model_config.dtype)
- self.model_config.dtype = torch.bfloat16
- # Instantiate the worker and load the model to the device.
- self._init_worker()
- def _init_worker(self):
- from aphrodite.task_handler.tpu_worker import TPUWorker
- assert self.parallel_config.world_size == 1, (
- "TPUExecutor currently only supports a single TPU chip.")
- distributed_init_method = get_distributed_init_method(
- get_ip(), get_open_port())
- self.driver_worker = TPUWorker(
- self.model_config,
- self.parallel_config,
- self.scheduler_config,
- self.device_config,
- self.cache_config,
- self.load_config,
- self.vision_language_config,
- local_rank=0,
- rank=0,
- distributed_init_method=distributed_init_method,
- )
- self.driver_worker.init_device()
- self.driver_worker.load_model()
- def initialize_cache(
- self,
- num_gpu_blocks: int,
- num_cpu_blocks: int,
- ) -> None:
- """Initialize the KV cache by invoking the underlying worker."""
- # NOTE: This is logged in the executor because there can be >1 worker
- # with other executors. We could log in the engine level, but work
- # remains to abstract away the device for non-GPU configurations.
- logger.info(f"# TPU blocks: {num_gpu_blocks}, "
- f"# CPU blocks: {num_cpu_blocks}")
- logger.info(
- f"Minimum concurrency: {num_gpu_blocks * self.cache_config.block_size / self.scheduler_config.max_model_len:.2f}x" # noqa: E501
- )
- self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
- def determine_num_available_blocks(self) -> Tuple[int, int]:
- """Determine the number of available KV blocks by invoking the
- underlying worker.
- """
- return self.driver_worker.determine_num_available_blocks()
- def execute_model(
- self,
- execute_model_req: ExecuteModelRequest,
- ) -> List[SamplerOutput]:
- output = self.driver_worker.execute_model(execute_model_req)
- return output
- def add_lora(self, lora_request: LoRARequest) -> bool:
- raise NotImplementedError("LoRA is not implemented for TPU backend.")
- def remove_lora(self, lora_id: int) -> bool:
- raise NotImplementedError("LoRA is not implemented for TPU backend.")
- def list_loras(self) -> Set[int]:
- raise NotImplementedError("LoRA is not implemented for TPU backend.")
- def check_health(self) -> None:
- # TPUExecutor will always be healthy as long as it's running.
- return
- class TPUExecutorAsync(TPUExecutor, ExecutorAsyncBase):
- async def execute_model_async(
- self,
- sexecute_model_req: ExecuteModelRequest,
- ) -> SamplerOutput:
- output = await make_async(self.driver_worker.execute_model
- )(sexecute_model_req)
- return output
|