123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367 |
- # Copyright 2023 The PygmalionAI team.
- # Copyright 2023 The vLLM team.
- # Adapted from https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/layers.py
- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
- # Parts of the code here are adapted from PyTorch
- # repo: https://github.com/pytorch/pytorch
- import torch
- import torch.nn.functional as F
- import torch.nn.init as init
- from torch.nn.parameter import Parameter
- from aphrodite.modeling.megatron.parallel_state import (
- get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size,
- )
- from .mappings import (
- gather_from_tensor_model_parallel_region,
- reduce_from_tensor_model_parallel_region,
- scatter_to_tensor_model_parallel_region,
- )
- from .utils import (
- divide,
- VocabUtility,
- )
- _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False,
- 'partition_dim': -1,
- 'partition_stride': 1}
- def param_is_not_tensor_parallel_duplicate(param):
- return (hasattr(param, 'tensor_model_parallel') and
- param.tensor_model_parallel) or (
- get_tensor_model_parallel_rank() == 0)
- def set_tensor_model_parallel_attributes(tensor, is_parallel, dim, stride):
- # Make sure the attributes are not set.
- for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
- assert not hasattr(tensor, attribute)
- # Set the attributes.
- setattr(tensor, 'tensor_model_parallel', is_parallel)
- setattr(tensor, 'partition_dim', dim)
- setattr(tensor, 'partition_stride', stride)
- def set_defaults_if_not_set_tensor_model_parallel_attributes(tensor):
- def maybe_set(attribute, value):
- if not hasattr(tensor, attribute):
- setattr(tensor, attribute, value)
- for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
- maybe_set(attribute, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS[attribute])
- def copy_tensor_model_parallel_attributes(destination_tensor, source_tensor):
- def maybe_copy(attribute):
- if hasattr(source_tensor, attribute):
- setattr(destination_tensor, attribute,
- getattr(source_tensor, attribute))
- for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
- maybe_copy(attribute)
- class VocabParallelEmbedding(torch.nn.Module):
- """Embedding parallelized in the vocabulary dimension.
- This is mainly adapted from torch.nn.Embedding and all the default
- values are kept.
- Arguments:
- num_embeddings: vocabulary size.
- embedding_dim: size of hidden state.
- Keyword Arguments:
- init_method: method to initialize weights.
- params_dtype
- use_cpu_initialization
- perform_initialization
- """
- def __init__(self, num_embeddings: int, embedding_dim: int, *,
- init_method=init.xavier_normal_,
- params_dtype: torch.dtype=None,
- use_cpu_initialization: bool=False,
- perform_initialization: bool=True):
- super(VocabParallelEmbedding, self).__init__()
- assert not perform_initialization
- assert not use_cpu_initialization
- # Keep the input dimensions.
- self.num_embeddings = num_embeddings
- self.embedding_dim = embedding_dim
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- # Set the defaults for compatibility.
- self.padding_idx = None
- self.max_norm = None
- self.norm_type = 2.
- self.scale_grad_by_freq = False
- self.sparse = False
- self._weight = None
- self.tensor_model_parallel_size = get_tensor_model_parallel_world_size()
- # Divide the weight matrix along the vocaburaly dimension.
- self.vocab_start_index, self.vocab_end_index = \
- VocabUtility.vocab_range_from_global_vocab_size(
- self.num_embeddings, get_tensor_model_parallel_rank(),
- self.tensor_model_parallel_size)
- self.num_embeddings_per_partition = self.vocab_end_index - \
- self.vocab_start_index
- self.weight = Parameter(torch.empty(
- self.num_embeddings_per_partition, self.embedding_dim,
- device=torch.cuda.current_device(), dtype=params_dtype))
-
- def forward(self, input_):
- if self.tensor_model_parallel_size > 1:
- # Build the mask.
- input_mask = (input_ < self.vocab_start_index) | \
- (input_ >= self.vocab_end_index)
- # Mask the input.
- masked_input = input_.clone() - self.vocab_start_index
- masked_input[input_mask] = 0
- else:
- masked_input = input_
- # Get the embeddings.
- output_parallel = F.embedding(masked_input, self.weight,
- self.padding_idx, self.max_norm,
- self.norm_type, self.scale_grad_by_freq,
- self.sparse)
- # Mask the output embedding.
- if self.tensor_model_parallel_size > 1:
- output_parallel[input_mask, :] = 0.0
- # Reduce across all the model parallel GPUs.
- output = reduce_from_tensor_model_parallel_region(output_parallel)
- return output
- class ColumnParallelLinear(torch.nn.Module):
- """Linear layer with column parallelism.
- The linear layer is defined as Y = XA + b. A is parallelized along
- its second dimension as A = [A_1, ..., A_p].
- Arguments:
- input_size: first dimension of matrix A.
- output_size: second dimension of matrix A.
- Keyword Arguments
- bias: If true, add bias
- gather_output: If true, call all-gather on output and make Y available
- to all GPUs, otherwise, every GPU will have its output
- which is Y_i = XA_i
- init_method: method to initialize weights. Note that bias is always set
- to zero.
- stride: For the strided linear layers.
- keep_master_weight_for_test: This was added for testing and should be
- set to False. It returns the master weights
- used for initialization.
- skip_bias_add: This was added to enable performance optimations where bias
- can be fused with other elementwise operations. we skip
- adding bias but instead return it.
- params_dtype:
- use_cpu_initialization:
- """
- def __init__(self, input_size, output_size, *,
- bias=True, gather_output=True,
- init_method=init.xavier_normal_, stride=1,
- keep_master_weight_for_test=False,
- skip_bias_add=False,
- params_dtype=None,
- use_cpu_initialization=False,
- perform_initialization=True,
- quant_config=None,
- ):
- super(ColumnParallelLinear, self).__init__()
- assert not perform_initialization
- assert not use_cpu_initialization
- # Keep input parameters
- self.input_size = input_size
- self.output_size = output_size
- self.gather_output = gather_output
- # Divide the weight matrix along the last dimension.
- self.world_size = get_tensor_model_parallel_world_size()
- self.output_size_per_partition = divide(output_size, self.world_size)
- self.skip_bias_add = skip_bias_add
- self.quant_config = quant_config
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- # Parameters.
- # Note: torch.nn.functional.linear performs XA^T + b and as a result
- # we allocate the transpose.
- self.create_weights(params_dtype)
- if bias:
- self.bias = Parameter(torch.empty(
- self.output_size_per_partition,
- device=torch.cuda.current_device(),
- dtype=params_dtype))
- set_tensor_model_parallel_attributes(self.bias, True, 0, stride)
- # Always initialize bias to zero.
- with torch.no_grad():
- self.bias.zero_()
- else:
- self.register_parameter('bias', None)
- def create_weights(self, dtype: torch.dtype) -> None:
- self.weight = Parameter(torch.empty(
- self.output_size_per_partition, self.input_size,
- device=torch.cuda.current_device(), dtype=dtype))
- def apply_weights(
- self,
- x: torch.Tensor,
- bias: Optional[torch.Tensor],
- ) -> torch.Tensor:
- return F.linear(x, self.weight, bias)
- def forward(self, input_):
- """Forward of ColumnParallelLinear
- Args:
- input_: 3D tensor whose order of dimension is [sequence, batch, hidden]
- Returns:
- - output
- - bias
- """
- bias = self.bias if not self.skip_bias_add else None
- input_parallel = input_
- # Matrix multiply.
- output_parallel = self.apply_weights(input_parallel, bias)
- if self.gather_output:
- # All-gather across the partitions.
- output = gather_from_tensor_model_parallel_region(output_parallel)
- else:
- output = output_parallel
- output_bias = self.bias if self.skip_bias_add else None
- return output, output_bias
- class RowParallelLinear(torch.nn.Module):
- """Linear layer with row parallelism.
- The linear layer is defined as Y = XA + b. A is parallelized along
- its first dimension and X along its second dimension as:
- - -
- | A_1 |
- | . |
- A = | . | X = [X_1, ..., X_p]
- | . |
- | A_p |
- - -
- Arguments:
- input_size: first dimension of matrix A.
- output_size: second dimension of matrix A.
- Keyword Arguments:
- bias: If true, add bias. Note that bias is not parallelized.
- input_is_parallel: If true, we assume that the input is already
- split across the GPUs and we do not split
- again.
- init_method: method to initialize weights. Note that bias is always set
- to zero.
- stride: For the strided linear layers.
- keep_master_weight_for_test: This was added for testing and should be
- set to False. It returns the master weights
- used for initialization.
- skip_bias_add: This was added to enable performance optimization where bias
- can be fused with other elementwise operations. We skip
- adding bias but instead return it.
- params_dtype:
- use_cpu_initialization:
- perform_initialization:
- reduce_results:
- """
- def __init__(self, input_size, output_size, *,
- bias=True, input_is_parallel=False,
- init_method=init.xavier_normal_, stride=1,
- keep_master_weight_for_test=False,
- skip_bias_add=False,
- params_dtype=None,
- use_cpu_initialization=False,
- perform_initialization=True,
- reduce_results=True,
- quant_config=None,
- ):
- super(RowParallelLinear, self).__init__()
- assert not perform_initialization
- assert not use_cpu_initialization
- # Keep input parameters
- self.input_size = input_size
- self.output_size = output_size
- self.input_is_parallel = input_is_parallel
- self.reduce_results = reduce_results
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- # Divide the weight matrix along the last dimension.
- self.world_size = get_tensor_model_parallel_world_size()
- self.input_size_per_partition = divide(input_size, self.world_size)
- self.skip_bias_add = skip_bias_add
- self.quant_config = quant_config
- self.create_weights(params_dtype)
- if not reduce_results and (bias and not skip_bias_add):
- raise ValueError("When not reduce the results, adding bias to the "
- "results can lead to incorrect results")
- if bias:
- self.bias = Parameter(torch.empty(
- self.output_size, device=torch.cuda.current_device(),
- dtype=params_dtype))
- # Always initialize bias to zero.
- with torch.no_grad():
- self.bias.zero_()
- else:
- self.register_parameter('bias', None)
- def create_weights(self, dtype: torch.dtype) -> None:
- self.weight = Parameter(torch.empty(
- self.output_size, self.input_size_per_partition,
- device=torch.cuda.current_device(), dtype=dtype))
- def apply_weights(self, x: torch.Tensor) -> torch.Tensor:
- return F.linear(x, self.weight)
- def forward(self, input_):
- """Forward of RowParallelLinear
- Args:
- input_: 3D tensor whose order of dimension is [sequence, batch, hidden]
- Returns:
- - output
- - bias
- """
- # Set up backprop all-reduce.
- if self.input_is_parallel:
- input_parallel = input_
- else:
- input_parallel = scatter_to_tensor_model_parallel_region(input_)
- # Matrix multiply.
- output_parallel = self.apply_weights(input_parallel)
- if self.reduce_results and self.world_size > 1:
- output_ = reduce_from_tensor_model_parallel_region(output_parallel)
- else:
- output_ = output_parallel
- if not self.skip_bias_add:
- output = output_ + self.bias if self.bias is not None else output_
- output_bias = None
- else:
- output = output_
- output_bias = self.bias
- return output, output_bias
|