123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- from typing import List, Optional, Tuple, Type
- import librosa
- import numpy as np
- import pytest
- from transformers import AutoModel, AutoTokenizer, BatchEncoding
- from aphrodite.assets.audio import AudioAsset
- from aphrodite.common.sequence import SampleLogprobs
- from aphrodite.common.utils import STR_DTYPE_TO_TORCH_DTYPE
- from ..conftest import HfRunner, AphroditeRunner
- from .utils import check_logprobs_close
- pytestmark = pytest.mark.vlm
- MODEL_NAME = "fixie-ai/ultravox-v0_3"
- AudioTuple = Tuple[np.ndarray, int]
- @pytest.fixture(scope="session")
- def audio_and_sample_rate():
- return AudioAsset("mary_had_lamb").audio_and_sample_rate
- @pytest.fixture
- def prompts_and_audios(audio_and_sample_rate):
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
- aphrodite_placeholder = "<|reserved_special_token_0|>"
- hf_placeholder = "<|audio|>"
- question = "What's in the audio?"
- aphrodite_prompt = tokenizer.apply_chat_template(
- [{
- 'role': 'user',
- 'content': f"{aphrodite_placeholder}\n{question}"
- }],
- tokenize=False,
- add_generation_prompt=True)
- hf_prompt = tokenizer.apply_chat_template(
- [{
- 'role': 'user',
- 'content': f"{hf_placeholder}\n{question}"
- }],
- tokenize=False,
- add_generation_prompt=True)
- return [(aphrodite_prompt, hf_prompt, audio_and_sample_rate)]
- def aphrodite_to_hf_output(aphrodite_output: Tuple[List[int], str,
- Optional[SampleLogprobs]],
- model: str):
- """Sanitize aphrodite output to be comparable with hf output."""
- output_ids, output_str, out_logprobs = aphrodite_output
- tokenizer = AutoTokenizer.from_pretrained(model)
- eos_token_id = tokenizer.eos_token_id
- hf_output_ids = output_ids[:]
- hf_output_str = output_str
- if hf_output_ids[-1] == eos_token_id:
- hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
- return hf_output_ids, hf_output_str, out_logprobs
- def run_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- prompts_and_audios: List[Tuple[str, str, AudioTuple]],
- model: str,
- *,
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- """Inference result should be the same between hf and aphrodite."""
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype]
- # NOTE: take care of the order. run Aphrodite first, and then run HF.
- # Aphrodite needs a fresh new process without cuda initialization.
- # if we run HF first, the cuda initialization will be done and it
- # will hurt multiprocessing backend with fork method (the default method).
- with aphrodite_runner(model,
- dtype=dtype,
- tensor_parallel_size=tensor_parallel_size,
- distributed_executor_backend=distributed_executor_backend,
- enforce_eager=True) as aphrodite_model:
- aphrodite_outputs_per_audio = [
- aphrodite_model.generate_greedy_logprobs([aphrodite_prompt],
- max_tokens,
- num_logprobs=num_logprobs,
- audios=[audio])
- for aphrodite_prompt, _, audio in prompts_and_audios
- ]
- def process(hf_inputs: BatchEncoding):
- hf_inputs["audio_values"] = hf_inputs["audio_values"] \
- .to(torch_dtype) # type: ignore
- return hf_inputs
- with hf_runner(model,
- dtype=dtype,
- postprocess_inputs=process,
- auto_cls=AutoModel) as hf_model:
- hf_outputs_per_audio = [
- hf_model.generate_greedy_logprobs_limit(
- [hf_prompt],
- max_tokens,
- num_logprobs=num_logprobs,
- audios=[(librosa.resample(audio[0],
- orig_sr=audio[1],
- target_sr=16000), 16000)])
- for _, hf_prompt, audio in prompts_and_audios
- ]
- for hf_outputs, aphrodite_outputs in zip(hf_outputs_per_audio,
- aphrodite_outputs_per_audio):
- check_logprobs_close(
- outputs_0_lst=hf_outputs,
- outputs_1_lst=[
- aphrodite_to_hf_output(aphrodite_output, model)
- for aphrodite_output in aphrodite_outputs
- ],
- name_0="hf",
- name_1="aphrodite",
- )
- @pytest.mark.parametrize("dtype", ["half"])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- def test_models(hf_runner, aphrodite_runner, prompts_and_audios, dtype: str,
- max_tokens: int, num_logprobs: int) -> None:
- run_test(
- hf_runner,
- aphrodite_runner,
- prompts_and_audios,
- MODEL_NAME,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- tensor_parallel_size=1,
- )
|