123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- /******************************************************************************
- * Copyright (c) 2023, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include <cuda_bf16.h>
- #include <cuda_fp16.h>
- #define FULL_MASK 0xffffffff
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- struct uint8 {
- uint4 u;
- uint4 v;
- };
- template <int BYTES>
- struct BytesToType {};
- template <>
- struct BytesToType<32> {
- using Type = uint8;
- static_assert(sizeof(Type) == 32);
- };
- template <>
- struct BytesToType<16> {
- using Type = uint4;
- static_assert(sizeof(Type) == 16);
- };
- template <>
- struct BytesToType<8> {
- using Type = uint64_t;
- static_assert(sizeof(Type) == 8);
- };
- template <>
- struct BytesToType<4> {
- using Type = uint32_t;
- static_assert(sizeof(Type) == 4);
- };
- template <>
- struct BytesToType<2> {
- using Type = uint16_t;
- static_assert(sizeof(Type) == 2);
- };
- template <>
- struct BytesToType<1> {
- using Type = uint8_t;
- static_assert(sizeof(Type) == 1);
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template <typename T>
- struct SumOp {
- __device__ inline T operator()(T const& x, T const& y) { return x + y; }
- };
- template <int THREADS>
- struct Allreduce {
- static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
- template <typename T, typename Operator>
- static __device__ inline T run(T x, Operator& op) {
- constexpr int OFFSET = THREADS / 2;
- x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
- return Allreduce<OFFSET>::run(x, op);
- }
- };
- template <>
- struct Allreduce<2> {
- template <typename T, typename Operator>
- static __device__ inline T run(T x, Operator& op) {
- x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
- return x;
- }
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // https://stackoverflow.com/questions/35311711/whats-the-right-way-to-compute-integral-base-2-logarithms-at-compile-time
- constexpr int cilog2(int val) { return val > 0 ? 1 + cilog2(val >> 1) : -1; }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template <int kLogN, int kNChunks>
- __device__ __forceinline__ void hadamard_mult_thread(
- double x[kNChunks][1 << kLogN]) {
- constexpr int N = 1 << kLogN;
- #pragma unroll
- for (int i = 0; i < kLogN; ++i) {
- const int stride = 1 << i;
- #pragma unroll
- for (int j = 0; j < N / 2; ++j) {
- const int lo = j & (stride - 1);
- const int idx = (j - lo) * 2 + lo;
- #pragma unroll
- for (int c = 0; c < kNChunks; ++c) {
- const float a = x[c][idx];
- const float b = x[c][idx + stride];
- x[c][idx] = a + b;
- x[c][idx + stride] = a - b;
- }
- }
- }
- }
- template <int kLogWarpSize, int kStepStart, int kNChunks, int kNItems>
- __device__ __forceinline__ void hadamard_mult_warp(
- double x[kNChunks][kNItems]) {
- constexpr int N = 1 << kLogWarpSize;
- int lane_id = threadIdx.x % N;
- #pragma unroll
- for (int step = kStepStart; step < kLogWarpSize; ++step) {
- const int lane_mask = 1 << step;
- const float sign = (lane_id & lane_mask) ? -1.f : 1.f;
- #pragma unroll
- for (int c = 0; c < kNChunks; ++c) {
- #pragma unroll
- for (int i = 0; i < kNItems; ++i) {
- float x_val_other = __shfl_xor_sync(FULL_MASK, x[c][i], lane_mask);
- x[c][i] = sign * x[c][i] + x_val_other;
- }
- }
- }
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template <int kNChunks, int kNElts, typename input_t>
- inline __device__ void load_input(input_t* x, double x_vals[kNChunks][kNElts],
- int64_t dim) {
- using vec_t = typename BytesToType<sizeof(input_t) * kNElts>::Type;
- input_t x_vals_load[kNChunks][kNElts] = {0};
- #pragma unroll
- for (int c = 0; c < kNChunks; ++c) {
- if ((c * blockDim.x + threadIdx.x) * kNElts < dim) {
- reinterpret_cast<vec_t*>(x_vals_load)[c] =
- reinterpret_cast<const vec_t*>(x)[c * blockDim.x + threadIdx.x];
- }
- }
- #pragma unroll
- for (int c = 0; c < kNChunks; ++c) {
- #pragma unroll
- for (int i = 0; i < kNElts; ++i) {
- x_vals[c][i] = float(x_vals_load[c][i]);
- }
- }
- }
- template <int kNChunks, int kNElts, typename output_t>
- inline __device__ void store_output(output_t* out,
- double out_vals[kNChunks][kNElts],
- int64_t dim, double scale = 1.f) {
- using vec_t = typename BytesToType<sizeof(output_t) * kNElts>::Type;
- output_t out_vals_store[kNChunks][kNElts];
- #pragma unroll
- for (int c = 0; c < kNChunks; ++c) {
- #pragma unroll
- for (int i = 0; i < kNElts; ++i) {
- out_vals_store[c][i] = out_vals[c][i] * scale;
- }
- }
- #pragma unroll
- for (int c = 0; c < kNChunks; ++c) {
- if ((c * blockDim.x + threadIdx.x) * kNElts < dim) {
- reinterpret_cast<vec_t*>(out)[c * blockDim.x + threadIdx.x] =
- reinterpret_cast<const vec_t*>(out_vals_store)[c];
- }
- }
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // Pre=true means the exchange before the hadamard_mult_warp, Pre=false means
- // after.
- template <int kNChunks, int kChunksPerExchange, int kNElts, int kWarpSize,
- int kNWarps, bool Pre, typename vec_t>
- inline __device__ void exchange_smem_pre(double x_vals[kNChunks][kNElts],
- vec_t* smem) {
- constexpr int kNThreads = kWarpSize * kNWarps;
- constexpr int kNExchangePerVec = kNElts / (sizeof(vec_t) / sizeof(float));
- const int warp_id = threadIdx.x / kWarpSize;
- const int lane_id = threadIdx.x % kWarpSize;
- const int row_t = threadIdx.x % kNWarps;
- const int col_t = threadIdx.x / kNWarps;
- // We use the XOR swizzle trick (new_col = col ^ row) to avoid / reduce smem
- // bank conflicts.
- #pragma unroll
- for (int c0 = 0; c0 < kNChunks / kChunksPerExchange; ++c0) {
- __syncthreads();
- #pragma unroll
- for (int c1 = 0; c1 < kChunksPerExchange; ++c1) {
- #pragma unroll
- for (int r = 0; r < kNExchangePerVec; ++r) {
- smem[(c1 * kNExchangePerVec + r) * kNThreads +
- (Pre ? warp_id * kWarpSize + lane_id ^ warp_id
- : row_t * kWarpSize + col_t ^ row_t)] =
- reinterpret_cast<vec_t*>(x_vals[c0 * kChunksPerExchange + c1])[r];
- }
- }
- __syncthreads();
- #pragma unroll
- for (int c1 = 0; c1 < kChunksPerExchange; ++c1) {
- #pragma unroll
- for (int r = 0; r < kNExchangePerVec; ++r) {
- reinterpret_cast<vec_t*>(x_vals[c0 * kChunksPerExchange + c1])[r] =
- smem[(c1 * kNExchangePerVec + r) * kNThreads +
- (Pre ? row_t * kWarpSize + col_t ^ row_t
- : warp_id * kWarpSize + lane_id ^ warp_id)];
- }
- }
- }
- }
|