123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- /******************************************************************************
- * Copyright (c) 2023, Tri Dao.
- ******************************************************************************/
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include <torch/all.h>
- #include <vector>
- #include "fast_hadamard_transform.h"
- #include "../core/registration.h"
- #define CHECK_SHAPE(x, ...) \
- TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), \
- #x " must have shape (" #__VA_ARGS__ ")")
- #define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
- if (ITYPE == at::ScalarType::Half) { \
- using input_t = at::Half; \
- __VA_ARGS__(); \
- } else if (ITYPE == at::ScalarType::BFloat16) { \
- using input_t = at::BFloat16; \
- __VA_ARGS__(); \
- } else if (ITYPE == at::ScalarType::Float) { \
- using input_t = float; \
- __VA_ARGS__(); \
- } else { \
- AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), \
- "'"); \
- }
- template <typename input_t>
- void fast_hadamard_transform_cuda(HadamardParamsBase& params,
- cudaStream_t stream);
- template <typename input_t>
- void fast_hadamard_transform_12N_cuda(HadamardParamsBase& params,
- cudaStream_t stream);
- template <typename input_t>
- void fast_hadamard_transform_20N_cuda(HadamardParamsBase& params,
- cudaStream_t stream);
- template <typename input_t>
- void fast_hadamard_transform_28N_cuda(HadamardParamsBase& params,
- cudaStream_t stream);
- void set_hadamard_params(HadamardParamsBase& params,
- // sizes
- const size_t batch, const size_t dim,
- const size_t multiple,
- // device pointers
- const at::Tensor x, const at::Tensor out,
- double scale) {
- // Reset the parameters
- memset(¶ms, 0, sizeof(params));
- params.batch = batch;
- params.dim = dim;
- params.log_N = int(ceil(std::log2(dim / multiple)));
- // Set the pointers and strides.
- params.x_ptr = x.data_ptr();
- params.out_ptr = out.data_ptr();
- // All stride are in elements, not bytes.
- params.x_batch_stride = x.stride(0);
- params.out_batch_stride = out.stride(0);
- params.scale = scale;
- }
- at::Tensor fast_hadamard_transform(at::Tensor& x, double scale) {
- auto input_type = x.scalar_type();
- TORCH_CHECK(input_type == at::ScalarType::Float ||
- input_type == at::ScalarType::Half ||
- input_type == at::ScalarType::BFloat16);
- TORCH_CHECK(x.is_cuda());
- const auto shapes_og = x.sizes();
- const int dim_og = x.size(-1);
- x = x.reshape({-1, dim_og});
- if (x.stride(-1) != 1) {
- x = x.contiguous();
- }
- const auto sizes = x.sizes();
- const int batch_size = sizes[0];
- CHECK_SHAPE(x, batch_size, dim_og);
- TORCH_CHECK(x.stride(1) == 1);
- if (dim_og % 8 != 0) {
- x = torch::nn::functional::pad(
- x, torch::nn::functional::PadFuncOptions({0, 8 - dim_og % 8}));
- }
- const int dim = x.size(1);
- TORCH_CHECK(dim % 8 == 0,
- "fast_hadamard_transform only supports hidden dimension "
- "divisible by 8 for now");
- TORCH_CHECK(dim <= 32768,
- "fast_hadamard_transform only supports hidden dimension at most "
- "32768 for now");
- at::Tensor out = torch::empty_like(x);
- HadamardParamsBase params;
- set_hadamard_params(params, batch_size, dim, 1, x, out, scale);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)x.get_device()};
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(
- x.scalar_type(), "fast_hadamard_transform",
- [&] { fast_hadamard_transform_cuda<input_t>(params, stream); });
- if (dim_og % 8 != 0) {
- out = out.index({torch::indexing::Slice(),
- torch::indexing::Slice(torch::indexing::None, dim_og)});
- }
- return out.reshape(shapes_og);
- }
- at::Tensor fast_hadamard_transform_12N(at::Tensor& x, double scale) {
- auto input_type = x.scalar_type();
- TORCH_CHECK(input_type == at::ScalarType::Float ||
- input_type == at::ScalarType::Half ||
- input_type == at::ScalarType::BFloat16);
- TORCH_CHECK(x.is_cuda());
- const auto shapes_og = x.sizes();
- const int dim_og = x.size(-1);
- x = x.reshape({-1, dim_og});
- if (x.stride(-1) != 1) {
- x = x.contiguous();
- }
- const auto sizes = x.sizes();
- const int batch_size = sizes[0];
- CHECK_SHAPE(x, batch_size, dim_og);
- TORCH_CHECK(x.stride(1) == 1);
- if (dim_og % (4 * 12) != 0) {
- x = torch::nn::functional::pad(x, torch::nn::functional::PadFuncOptions(
- {0, (4 * 12) - dim_og % (4 * 12)}));
- }
- const int dim = x.size(1);
- TORCH_CHECK(dim % (4 * 12) == 0,
- "fast_hadamard_transform_12N only supports hidden dimension "
- "divisible by 48 for now");
- TORCH_CHECK(dim <= 12 * 1024,
- "fast_hadamard_transform_12N only supports hidden dimension at "
- "most 12288 for now");
- at::Tensor out = torch::empty_like(x);
- HadamardParamsBase params;
- set_hadamard_params(params, batch_size, dim, 12, x, out, scale);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)x.get_device()};
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(
- x.scalar_type(), "fast_hadamard_transform",
- [&] { fast_hadamard_transform_12N_cuda<input_t>(params, stream); });
- if (dim_og % (4 * 12) != 0) {
- out = out.index({torch::indexing::Slice(),
- torch::indexing::Slice(torch::indexing::None, dim_og)});
- }
- return out.reshape(shapes_og);
- }
- at::Tensor fast_hadamard_transform_20N(at::Tensor& x, double scale) {
- auto input_type = x.scalar_type();
- TORCH_CHECK(input_type == at::ScalarType::Float ||
- input_type == at::ScalarType::Half ||
- input_type == at::ScalarType::BFloat16);
- TORCH_CHECK(x.is_cuda());
- const auto shapes_og = x.sizes();
- const int dim_og = x.size(-1);
- x = x.reshape({-1, dim_og});
- if (x.stride(-1) != 1) {
- x = x.contiguous();
- }
- const auto sizes = x.sizes();
- const int batch_size = sizes[0];
- CHECK_SHAPE(x, batch_size, dim_og);
- TORCH_CHECK(x.stride(1) == 1);
- if (dim_og % (4 * 20) != 0) {
- x = torch::nn::functional::pad(x, torch::nn::functional::PadFuncOptions(
- {0, (4 * 20) - dim_og % (4 * 20)}));
- }
- const int dim = x.size(1);
- TORCH_CHECK(dim % (4 * 20) == 0,
- "fast_hadamard_transform_20N only supports hidden dimension "
- "divisible by 80 for now");
- TORCH_CHECK(dim <= 20 * 1024,
- "fast_hadamard_transform_20N only supports hidden dimension at "
- "most 20480 for now");
- at::Tensor out = torch::empty_like(x);
- HadamardParamsBase params;
- set_hadamard_params(params, batch_size, dim, 20, x, out, scale);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)x.get_device()};
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(
- x.scalar_type(), "fast_hadamard_transform",
- [&] { fast_hadamard_transform_20N_cuda<input_t>(params, stream); });
- if (dim_og % (4 * 20) != 0) {
- out = out.index({torch::indexing::Slice(),
- torch::indexing::Slice(torch::indexing::None, dim_og)});
- }
- return out.reshape(shapes_og);
- }
- at::Tensor fast_hadamard_transform_28N(at::Tensor& x, double scale) {
- auto input_type = x.scalar_type();
- TORCH_CHECK(input_type == at::ScalarType::Float ||
- input_type == at::ScalarType::Half ||
- input_type == at::ScalarType::BFloat16);
- TORCH_CHECK(x.is_cuda());
- const auto shapes_og = x.sizes();
- const int dim_og = x.size(-1);
- x = x.reshape({-1, dim_og});
- if (x.stride(-1) != 1) {
- x = x.contiguous();
- }
- const auto sizes = x.sizes();
- const int batch_size = sizes[0];
- CHECK_SHAPE(x, batch_size, dim_og);
- TORCH_CHECK(x.stride(1) == 1);
- if (dim_og % (4 * 28) != 0) {
- x = torch::nn::functional::pad(x, torch::nn::functional::PadFuncOptions(
- {0, (4 * 28) - dim_og % (4 * 28)}));
- }
- const int dim = x.size(1);
- TORCH_CHECK(dim % (4 * 28) == 0,
- "fast_hadamard_transform_28N only supports hidden dimension "
- "divisible by 112 for now");
- // TORCH_CHECK(dim <= 28 * 1024, "fast_hadamard_transform_28N only supports
- // hidden dimension at most 28672 for now");
- TORCH_CHECK(dim <= 28 * 2048,
- "fast_hadamard_transform_28N only supports hidden dimension at "
- "most 28672 for now");
- at::Tensor out = torch::empty_like(x);
- HadamardParamsBase params;
- set_hadamard_params(params, batch_size, dim, 28, x, out, scale);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)x.get_device()};
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(
- x.scalar_type(), "fast_hadamard_transform",
- [&] { fast_hadamard_transform_28N_cuda<input_t>(params, stream); });
- if (dim_og % (8 * 28) != 0) {
- out = out.index({torch::indexing::Slice(),
- torch::indexing::Slice(torch::indexing::None, dim_og)});
- }
- return out.reshape(shapes_og);
- }
- TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
- m.def("fast_hadamard_transform(Tensor x, double scale) -> Tensor",
- &fast_hadamard_transform);
- m.impl("fast_hadamard_transform", torch::kCUDA, &fast_hadamard_transform);
- m.def("fast_hadamard_transform_12N(Tensor x, double scale) -> Tensor",
- &fast_hadamard_transform_12N);
- m.impl("fast_hadamard_transform_12N", torch::kCUDA,
- &fast_hadamard_transform_12N);
- m.def("fast_hadamard_transform_20N(Tensor x, double scale) -> Tensor",
- &fast_hadamard_transform_20N);
- m.impl("fast_hadamard_transform_20N", torch::kCUDA,
- &fast_hadamard_transform_20N);
- m.def("fast_hadamard_transform_28N(Tensor x, double scale) -> Tensor",
- &fast_hadamard_transform_28N);
- m.impl("fast_hadamard_transform_28N", torch::kCUDA,
- &fast_hadamard_transform_28N);
- }
- REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|