123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754 |
- import asyncio
- import importlib
- import inspect
- import json
- import multiprocessing
- import os
- import re
- import tempfile
- from argparse import Namespace
- from contextlib import asynccontextmanager
- from http import HTTPStatus
- from typing import AsyncGenerator, AsyncIterator, List, Set, Tuple
- import uvloop
- from fastapi import APIRouter, FastAPI, Request
- from fastapi.exceptions import RequestValidationError
- from fastapi.middleware.cors import CORSMiddleware
- from fastapi.responses import (HTMLResponse, JSONResponse, Response,
- StreamingResponse)
- from loguru import logger
- from starlette.routing import Mount
- from aphrodite.common.config import ModelConfig
- from aphrodite.common.outputs import RequestOutput
- from aphrodite.common.sampling_params import _SAMPLING_EPS, SamplingParams
- from aphrodite.common.utils import (FlexibleArgumentParser,
- get_open_zmq_ipc_path, random_uuid)
- from aphrodite.endpoints.logger import RequestLogger
- from aphrodite.endpoints.openai.args import make_arg_parser
- # yapf: disable
- from aphrodite.endpoints.openai.protocol import (ChatCompletionRequest,
- ChatCompletionResponse,
- CompletionRequest,
- DetokenizeRequest,
- DetokenizeResponse,
- EmbeddingRequest,
- ErrorResponse,
- KAIGenerationInputSchema,
- TokenizeRequest,
- TokenizeResponse)
- from aphrodite.endpoints.openai.rpc.client import AsyncEngineRPCClient
- from aphrodite.endpoints.openai.rpc.server import run_rpc_server
- # yapf: enable
- from aphrodite.endpoints.openai.serving_chat import OpenAIServingChat
- from aphrodite.endpoints.openai.serving_completions import (
- OpenAIServingCompletion)
- from aphrodite.endpoints.openai.serving_embedding import OpenAIServingEmbedding
- from aphrodite.endpoints.openai.serving_engine import (LoRAModulePath,
- PromptAdapterPath)
- from aphrodite.endpoints.openai.serving_tokenization import (
- OpenAIServingTokenization)
- from aphrodite.engine.args_tools import AsyncEngineArgs
- from aphrodite.engine.async_aphrodite import AsyncAphrodite
- from aphrodite.engine.protocol import AsyncEngineClient
- from aphrodite.server import serve_http
- from aphrodite.transformers_utils.tokenizer import get_tokenizer
- from aphrodite.version import __version__ as APHRODITE_VERSION
- TIMEOUT_KEEP_ALIVE = 5 # seconds
- async_engine_client: AsyncEngineClient
- engine_args: AsyncEngineArgs
- openai_serving_chat: OpenAIServingChat
- openai_serving_completion: OpenAIServingCompletion
- openai_serving_embedding: OpenAIServingEmbedding
- openai_serving_tokenization: OpenAIServingTokenization
- router = APIRouter()
- kai_api = APIRouter()
- extra_api = APIRouter()
- kobold_lite_ui = ""
- sampler_json = ""
- gen_cache: dict = {}
- prometheus_multiproc_dir: tempfile.TemporaryDirectory
- _running_tasks: Set[asyncio.Task] = set()
- def model_is_embedding(model_name: str, trust_remote_code: bool) -> bool:
- return ModelConfig(model=model_name,
- tokenizer=model_name,
- tokenizer_mode="auto",
- trust_remote_code=trust_remote_code,
- seed=0,
- dtype="auto").embedding_mode
- @asynccontextmanager
- async def lifespan(app: FastAPI):
- async def _force_log():
- while True:
- await asyncio.sleep(10)
- await async_engine_client.do_log_stats()
- if not engine_args.disable_log_stats:
- task = asyncio.create_task(_force_log())
- _running_tasks.add(task)
- task.add_done_callback(_running_tasks.remove)
- yield
- @asynccontextmanager
- async def build_async_engine_client(args) -> AsyncIterator[AsyncEngineClient]:
- # Context manager to handle async_engine_client lifecycle
- # Ensures everything is shutdown and cleaned up on error/exit
- global engine_args
- engine_args = AsyncEngineArgs.from_cli_args(args)
- # Backend itself still global for the silly lil' health handler
- global async_engine_client
- # If manually triggered or embedding model, use AsyncAphrodite in process.
- # TODO: support embedding model via RPC.
- if (model_is_embedding(args.model, args.trust_remote_code)
- or args.disable_frontend_multiprocessing):
- async_engine_client = AsyncAphrodite.from_engine_args(engine_args)
- yield async_engine_client
- return
- # Otherwise, use the multiprocessing AsyncAphrodite.
- else:
- if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
- # Make TemporaryDirectory for prometheus multiprocessing
- # Note: global TemporaryDirectory will be automatically
- # cleaned up upon exit.
- global prometheus_multiproc_dir
- prometheus_multiproc_dir = tempfile.TemporaryDirectory()
- os.environ[
- "PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
- else:
- logger.warning(
- "Found PROMETHEUS_MULTIPROC_DIR was set by user. "
- "This directory must be wiped between Aphrodite runs or "
- "you will find inaccurate metrics. Unset the variable "
- "and Aphrodite will properly handle cleanup.")
- # Select random path for IPC.
- rpc_path = get_open_zmq_ipc_path()
- logger.info(f"Multiprocessing frontend to use {rpc_path} for RPC Path."
- )
- # Start RPCServer in separate process (holds the AsyncAphrodite).
- context = multiprocessing.get_context("spawn")
- # the current process might have CUDA context,
- # so we need to spawn a new process
- rpc_server_process = context.Process(
- target=run_rpc_server,
- args=(engine_args, rpc_path))
- rpc_server_process.start()
- logger.info(
- f"Started engine process with PID {rpc_server_process.pid}")
- # Build RPCClient, which conforms to AsyncEngineClient Protocol.
- async_engine_client = AsyncEngineRPCClient(rpc_path)
- try:
- while True:
- try:
- await async_engine_client.setup()
- break
- except TimeoutError as e:
- if not rpc_server_process.is_alive():
- raise RuntimeError(
- "The server process died before "
- "responding to the readiness probe") from e
- yield async_engine_client
- finally:
- # Ensure rpc server process was terminated
- rpc_server_process.terminate()
- # Close all open connections to the backend
- async_engine_client.close()
- # Wait for server process to join
- rpc_server_process.join()
- # Lazy import for prometheus multiprocessing.
- # We need to set PROMETHEUS_MULTIPROC_DIR environment variable
- # before prometheus_client is imported.
- # See https://prometheus.github.io/client_python/multiprocess/
- from prometheus_client import multiprocess
- multiprocess.mark_process_dead(rpc_server_process.pid)
- def mount_metrics(app: FastAPI):
- # Lazy import for prometheus multiprocessing.
- # We need to set PROMETHEUS_MULTIPROC_DIR environment variable
- # before prometheus_client is imported.
- # See https://prometheus.github.io/client_python/multiprocess/
- from prometheus_client import (CollectorRegistry, make_asgi_app,
- multiprocess)
- prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
- if prometheus_multiproc_dir_path is not None:
- logger.info(f"Aphrodite to use {prometheus_multiproc_dir_path} "
- "as PROMETHEUS_MULTIPROC_DIR")
- registry = CollectorRegistry()
- multiprocess.MultiProcessCollector(registry)
- # Add prometheus asgi middleware to route /metrics requests
- metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
- else:
- # Add prometheus asgi middleware to route /metrics requests
- metrics_route = Mount("/metrics", make_asgi_app())
- # Workaround for 307 Redirect for /metrics
- metrics_route.path_regex = re.compile('^/metrics(?P<path>.*)$')
- app.routes.append(metrics_route)
- @router.get("/health")
- async def health() -> Response:
- """Health check."""
- await async_engine_client.check_health()
- return Response(status_code=200)
- @router.post("/v1/tokenize")
- async def tokenize(request: TokenizeRequest):
- generator = await openai_serving_tokenization.create_tokenize(request)
- if isinstance(generator, ErrorResponse):
- return JSONResponse(content=generator.model_dump(),
- status_code=generator.code)
- else:
- assert isinstance(generator, TokenizeResponse)
- return JSONResponse(content=generator.model_dump())
- @router.post("/v1/detokenize")
- async def detokenize(request: DetokenizeRequest):
- generator = await openai_serving_tokenization.create_detokenize(request)
- if isinstance(generator, ErrorResponse):
- return JSONResponse(content=generator.model_dump(),
- status_code=generator.code)
- else:
- assert isinstance(generator, DetokenizeResponse)
- return JSONResponse(content=generator.model_dump())
- @router.get("/v1/models")
- async def show_available_models():
- models = await openai_serving_completion.show_available_models()
- return JSONResponse(content=models.model_dump())
- @router.get("/version")
- async def show_version():
- ver = {"version": APHRODITE_VERSION}
- return JSONResponse(content=ver)
- @router.post("/v1/chat/completions")
- async def create_chat_completion(request: ChatCompletionRequest,
- raw_request: Request):
- generator = await openai_serving_chat.create_chat_completion(
- request, raw_request)
- if isinstance(generator, ErrorResponse):
- return JSONResponse(content=generator.model_dump(),
- status_code=generator.code)
- if request.stream:
- return StreamingResponse(content=generator,
- media_type="text/event-stream")
- else:
- assert isinstance(generator, ChatCompletionResponse)
- return JSONResponse(content=generator.model_dump())
- @router.post("/v1/completions")
- async def create_completion(request: CompletionRequest, raw_request: Request):
- generator = await openai_serving_completion.create_completion(
- request, raw_request)
- if isinstance(generator, ErrorResponse):
- return JSONResponse(content=generator.model_dump(),
- status_code=generator.code)
- if request.stream:
- return StreamingResponse(content=generator,
- media_type="text/event-stream")
- else:
- return JSONResponse(content=generator.model_dump())
- @router.post("/v1/embeddings")
- async def create_embedding(request: EmbeddingRequest, raw_request: Request):
- generator = await openai_serving_embedding.create_embedding(
- request, raw_request)
- if isinstance(generator, ErrorResponse):
- return JSONResponse(content=generator.model_dump(),
- status_code=generator.code)
- else:
- return JSONResponse(content=generator.model_dump())
-
- @router.post("/v1/lora/load")
- async def load_lora(lora: LoRAModulePath):
- openai_serving_completion.add_lora(lora)
- if engine_args.enable_lora is False:
- logger.error("LoRA is not enabled in the engine. "
- "Please start the server with the "
- "--enable-lora flag!")
- return JSONResponse(content={"status": "success"})
- @router.delete("/v1/lora/unload")
- async def unload_lora(lora_name: str):
- openai_serving_completion.remove_lora(lora_name)
- return JSONResponse(content={"status": "success"})
- @router.post("/v1/soft_prompt/load")
- async def load_soft_prompt(soft_prompt: PromptAdapterPath):
- openai_serving_completion.add_prompt_adapter(soft_prompt)
- if engine_args.enable_prompt_adapter is False:
- logger.error("Prompt Adapter is not enabled in the engine. "
- "Please start the server with the "
- "--enable-prompt-adapter flag!")
- return JSONResponse(content={"status": "success"})
- @router.delete("/v1/soft_prompt/unload")
- async def unload_soft_prompt(soft_prompt_name: str):
- openai_serving_completion.remove_prompt_adapter(soft_prompt_name)
- return JSONResponse(content={"status": "success"})
- # ============ KoboldAI API ============ #
- def _set_badwords(tokenizer, hf_config): # pylint: disable=redefined-outer-name
- # pylint: disable=global-variable-undefined
- global badwordsids
- if hf_config.bad_words_ids is not None:
- badwordsids = hf_config.bad_words_ids
- return
- badwordsids = [
- v for k, v in tokenizer.get_vocab().items()
- if any(c in str(k) for c in "[]")
- ]
- if tokenizer.pad_token_id in badwordsids:
- badwordsids.remove(tokenizer.pad_token_id)
- badwordsids.append(tokenizer.eos_token_id)
- def prepare_engine_payload(
- kai_payload: KAIGenerationInputSchema
- ) -> Tuple[SamplingParams, List[int]]:
- """Create SamplingParams and truncated input tokens for AsyncEngine"""
- if not kai_payload.genkey:
- kai_payload.genkey = f"kai-{random_uuid()}"
- kai_payload.top_k = kai_payload.top_k if kai_payload.top_k != 0.0 else -1
- kai_payload.tfs = max(_SAMPLING_EPS, kai_payload.tfs)
- if kai_payload.temperature < _SAMPLING_EPS:
- kai_payload.n = 1
- kai_payload.top_p = 1.0
- kai_payload.top_k = -1
- dynatemp_min = kai_payload.temperature - kai_payload.dynatemp_range / 2 \
- if kai_payload.dynatemp_range else None
- dynatemp_max = kai_payload.temperature + kai_payload.dynatemp_range / 2 \
- if kai_payload.dynatemp_range else None
- sampling_params = SamplingParams(
- n=kai_payload.n,
- best_of=kai_payload.n,
- repetition_penalty=kai_payload.rep_pen,
- temperature=kai_payload.temperature,
- smoothing_factor=kai_payload.smoothing_factor,
- smoothing_curve=kai_payload.smoothing_curve,
- tfs=kai_payload.tfs,
- top_p=kai_payload.top_p,
- top_k=kai_payload.top_k,
- top_a=kai_payload.top_a,
- min_p=kai_payload.min_p,
- typical_p=kai_payload.typical,
- eta_cutoff=kai_payload.eta_cutoff,
- epsilon_cutoff=kai_payload.eps_cutoff,
- stop=kai_payload.stop_sequence,
- include_stop_str_in_output=kai_payload.include_stop_str_in_output,
- custom_token_bans=badwordsids
- if kai_payload.use_default_badwordsids else [],
- max_tokens=kai_payload.max_length,
- seed=kai_payload.sampler_seed,
- dynatemp_min=dynatemp_min,
- dynatemp_max=dynatemp_max,
- dynatemp_exponent=kai_payload.dynatemp_exponent,
- xtc_probability=kai_payload.xtc_probability,
- xtc_threshold=kai_payload.xtc_threshold,
- )
- max_input_tokens = max(
- 1, kai_payload.max_context_length - kai_payload.max_length)
- input_tokens = tokenizer(kai_payload.prompt).input_ids[-max_input_tokens:]
- return sampling_params, input_tokens
- @kai_api.post("/generate")
- async def generate(kai_payload: KAIGenerationInputSchema) -> JSONResponse:
- sampling_params, input_tokens = prepare_engine_payload(kai_payload)
- result_generator = async_engine_client.generate(
- {
- "prompt": kai_payload.prompt,
- "prompt_token_ids": input_tokens,
- },
- sampling_params,
- kai_payload.genkey,
- )
- final_res: RequestOutput = None
- previous_output = ""
- async for res in result_generator:
- final_res = res
- new_chunk = res.outputs[0].text[len(previous_output):]
- previous_output += new_chunk
- gen_cache[kai_payload.genkey] = previous_output
- assert final_res is not None
- del gen_cache[kai_payload.genkey]
- return JSONResponse(
- {"results": [{
- "text": output.text
- } for output in final_res.outputs]})
- @extra_api.post("/generate/stream")
- async def generate_stream(
- kai_payload: KAIGenerationInputSchema) -> StreamingResponse:
- sampling_params, input_tokens = prepare_engine_payload(kai_payload)
- results_generator = async_engine_client.generate(
- {
- "prompt": kai_payload.prompt,
- "prompt_token_ids": input_tokens,
- },
- sampling_params,
- kai_payload.genkey,
- )
- async def stream_kobold() -> AsyncGenerator[bytes, None]:
- previous_output = ""
- async for res in results_generator:
- new_chunk = res.outputs[0].text[len(previous_output):]
- previous_output += new_chunk
- yield b"event: message\n"
- yield f"data: {json.dumps({'token': new_chunk})}\n\n".encode()
- return StreamingResponse(stream_kobold(),
- headers={
- "Cache-Control": "no-cache",
- "Connection": "keep-alive",
- },
- media_type="text/event-stream")
- @extra_api.post("/generate/check")
- @extra_api.get("/generate/check")
- async def check_generation(request: Request):
- text = ""
- try:
- request_dict = await request.json()
- if "genkey" in request_dict and request_dict["genkey"] in gen_cache:
- text = gen_cache[request_dict["genkey"]]
- except json.JSONDecodeError:
- pass
- return JSONResponse({"results": [{"text": text}]})
- @extra_api.post("/abort")
- async def abort_generation(request: Request):
- try:
- request_dict = await request.json()
- if "genkey" in request_dict:
- await async_engine_client.abort(request_dict["genkey"])
- except json.JSONDecodeError:
- pass
- return JSONResponse({})
- @extra_api.post("/tokencount")
- async def count_tokens(request: TokenizeRequest):
- """Tokenize string and return token count"""
- generator = await openai_serving_tokenization.create_tokenize(request)
- return JSONResponse({"value": generator.model_dump()["tokens"]})
- @kai_api.get("/info/version")
- async def get_version():
- """Impersonate KAI"""
- return JSONResponse({"result": "1.2.4"})
- @kai_api.get("/model")
- async def get_model():
- return JSONResponse({"result": f"aphrodite/{served_model_names[0]}"})
- @kai_api.get("/config/soft_prompts_list")
- async def get_available_softprompts():
- """Stub for compatibility"""
- return JSONResponse({"values": []})
- @kai_api.get("/config/soft_prompt")
- async def get_current_softprompt():
- """Stub for compatibility"""
- return JSONResponse({"value": ""})
- @kai_api.put("/config/soft_prompt")
- async def set_current_softprompt():
- """Stub for compatibility"""
- return JSONResponse({})
- @kai_api.get("/config/max_length")
- async def get_max_length() -> JSONResponse:
- max_length = args.max_length
- return JSONResponse({"value": max_length})
- @kai_api.get("/config/max_context_length")
- @extra_api.get("/true_max_context_length")
- async def get_max_context_length() -> JSONResponse:
- max_context_length = engine_args.max_model_len
- return JSONResponse({"value": max_context_length})
- @extra_api.get("/preloadstory")
- async def get_preloaded_story() -> JSONResponse:
- """Stub for compatibility"""
- return JSONResponse({})
- @extra_api.get("/version")
- async def get_extra_version():
- """Impersonate KoboldCpp"""
- return JSONResponse({"result": "KoboldCpp", "version": "1.63"})
- @router.get("/")
- async def get_kobold_lite_ui():
- """Serves a cached copy of the Kobold Lite UI, loading it from disk
- on demand if needed."""
- global kobold_lite_ui
- if kobold_lite_ui == "":
- scriptpath = os.path.dirname(os.path.abspath(__file__))
- klitepath = os.path.join(scriptpath, "../kobold/klite.embd")
- klitepath = os.path.normpath(klitepath) # Normalize the path
- if os.path.exists(klitepath):
- with open(klitepath, "r") as f:
- kobold_lite_ui = f.read()
- else:
- logger.error("Kobold Lite UI not found at " + klitepath)
- return HTMLResponse(content=kobold_lite_ui)
- # ============ KoboldAI API ============ #
- def build_app(args: Namespace) -> FastAPI:
- app = FastAPI(lifespan=lifespan)
- app.include_router(router)
- app.root_path = args.root_path
- if args.launch_kobold_api:
- logger.warning("Launching Kobold API server in addition to OpenAI. "
- "Keep in mind that the Kobold API routes are NOT "
- "protected via the API key.")
- app.include_router(kai_api, prefix="/api/v1")
- app.include_router(kai_api,
- prefix="/api/latest",
- include_in_schema=False)
- app.include_router(extra_api, prefix="/api/extra")
- mount_metrics(app)
- app.add_middleware(
- CORSMiddleware,
- allow_origins=args.allowed_origins,
- allow_credentials=args.allow_credentials,
- allow_methods=args.allowed_methods,
- allow_headers=args.allowed_headers,
- )
- @app.exception_handler(RequestValidationError)
- async def validation_exception_handler(_, exc):
- err = openai_serving_completion.create_error_response(message=str(exc))
- return JSONResponse(err.model_dump(),
- status_code=HTTPStatus.BAD_REQUEST)
- if token := os.environ.get("APHRODITE_API_KEY") or args.api_keys:
- admin_key = os.environ.get("APHRODITE_ADMIN_KEY") or args.admin_key
- if admin_key is None:
- logger.warning("Admin key not provided. Admin operations will "
- "be disabled.")
- @app.middleware("http")
- async def authentication(request: Request, call_next):
- excluded_paths = ["/api"]
- if any(
- request.url.path.startswith(path)
- for path in excluded_paths):
- return await call_next(request)
- if not request.url.path.startswith("/v1"):
- return await call_next(request)
- # Browsers may send OPTIONS requests to check CORS headers
- # before sending the actual request. We should allow these
- # requests to pass through without authentication.
- # See https://github.com/PygmalionAI/aphrodite-engine/issues/434
- if request.method == "OPTIONS":
- return await call_next(request)
- auth_header = request.headers.get("Authorization")
- api_key_header = request.headers.get("x-api-key")
- if request.url.path.startswith(("/v1/lora", "/v1/soft_prompt")):
- if admin_key is not None and api_key_header == admin_key:
- return await call_next(request)
- return JSONResponse(content={"error": "Unauthorized"},
- status_code=401)
- if auth_header != "Bearer " + token and api_key_header != token:
- return JSONResponse(content={"error": "Unauthorized"},
- status_code=401)
- return await call_next(request)
- for middleware in args.middleware:
- module_path, object_name = middleware.rsplit(".", 1)
- imported = getattr(importlib.import_module(module_path), object_name)
- if inspect.isclass(imported):
- app.add_middleware(imported)
- elif inspect.iscoroutinefunction(imported):
- app.middleware("http")(imported)
- else:
- raise ValueError(f"Invalid middleware {middleware}. "
- f"Must be a function or a class.")
- return app
- async def init_app(
- async_engine_client: AsyncEngineClient,
- args: Namespace,
- ) -> FastAPI:
- app = build_app(args)
- logger.debug(f"args: {args}")
- global served_model_names
- if args.served_model_name is not None:
- served_model_names = args.served_model_name
- else:
- served_model_names = [args.model]
- if args.uvloop:
- uvloop.install()
- global tokenizer
- model_config = await async_engine_client.get_model_config()
- if args.disable_log_requests:
- request_logger = None
- else:
- request_logger = RequestLogger(max_log_len=args.max_log_len)
- global openai_serving_chat
- global openai_serving_completion
- global openai_serving_embedding
- global openai_serving_tokenization
- openai_serving_chat = OpenAIServingChat(
- async_engine_client,
- model_config,
- served_model_names,
- args.response_role,
- lora_modules=args.lora_modules,
- prompt_adapters=args.prompt_adapters,
- request_logger=request_logger,
- chat_template=args.chat_template,
- return_tokens_as_token_ids=args.return_tokens_as_token_ids,
- )
- openai_serving_completion = OpenAIServingCompletion(
- async_engine_client,
- model_config,
- served_model_names,
- lora_modules=args.lora_modules,
- prompt_adapters=args.prompt_adapters,
- request_logger=request_logger,
- return_tokens_as_token_ids=args.return_tokens_as_token_ids,
- )
- openai_serving_embedding = OpenAIServingEmbedding(
- async_engine_client,
- model_config,
- served_model_names,
- request_logger=request_logger,
- )
- openai_serving_tokenization = OpenAIServingTokenization(
- async_engine_client,
- model_config,
- served_model_names,
- lora_modules=args.lora_modules,
- request_logger=request_logger,
- chat_template=args.chat_template,
- )
- app.root_path = args.root_path
- tokenizer = get_tokenizer(
- tokenizer_name=engine_args.tokenizer,
- tokenizer_mode=engine_args.tokenizer_mode,
- trust_remote_code=engine_args.trust_remote_code,
- revision=engine_args.revision,
- )
- if args.launch_kobold_api:
- _set_badwords(tokenizer, model_config.hf_config)
-
- return app
- async def run_server(args, **uvicorn_kwargs) -> None:
- async with build_async_engine_client(args) as async_engine_client:
- app = await init_app(async_engine_client, args)
- shutdown_task = await serve_http(
- app,
- engine=async_engine_client,
- host=args.host,
- port=args.port,
- log_level=args.uvicorn_log_level,
- timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
- ssl_keyfile=args.ssl_keyfile,
- ssl_certfile=args.ssl_certfile,
- ssl_ca_certs=args.ssl_ca_certs,
- ssl_cert_reqs=args.ssl_cert_reqs,
- **uvicorn_kwargs,
- )
- # NB: Await server shutdown only after the backend context is exited
- await shutdown_task
- if __name__ == "__main__":
- # NOTE:
- # This section should be in sync with aphrodite/endpoints/cli.py
- # for CLI entrypoints.
- parser = FlexibleArgumentParser(
- description="Aphrodite OpenAI-Compatible RESTful API Server")
- parser = make_arg_parser(parser)
- args = parser.parse_args()
- asyncio.run(run_server(args))
|